首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   13篇
  2023年   1篇
  2022年   4篇
  2021年   9篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   18篇
  2014年   11篇
  2013年   18篇
  2012年   22篇
  2011年   23篇
  2010年   10篇
  2009年   16篇
  2008年   16篇
  2007年   12篇
  2006年   15篇
  2005年   16篇
  2004年   14篇
  2003年   5篇
  2002年   4篇
  1997年   1篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有239条查询结果,搜索用时 156 毫秒
151.
The tomato processing industry generates large quantities of tomato peel residues, usually creating environmental problems. These residues are a significant source of lycopene, thus providing an attractive alternative for profitable handling of these otherwise problematic by-products. The enzymatic pretreatment of these residues for lycopene recovery has already been employed, although the use of surfactants for enhancing the recovery has not been examined so far. The enzymatic pretreatment of tomato peels, using two commercially available pectinolytic enzyme preparations, was evaluated suggesting that there is an optimum pretreatment time of about 1 h, enzyme amount 250 Units/mL and no significant pH influence. Lycopene surfactant - assisted extraction was further investigated, showing that, among eight surfactants used, the most suitable was "Span 20", with an optimum ratio of 6-7 surfactant molecules per lycopene molecule. Sequential enzymatic pretreatment and surfactant-assisted extraction (30 min for each step) was evaluated leading to an improved lycopene extraction yield, with a somewhat smaller surfactant molar ratio (i.e. 4-5). In the latter case, the yield of lycopene recovery was almost four times greater compared to just 1 hr enzymatic pretreatment, and was approximately ten times greater compared to the recovery from untreated peels. Furthermore, such lipophilic compound recovery, avoiding the use of organic solvents, is environmentally attractive and ensures direct lycopene use in the food and cosmetics industries.  相似文献   
152.
The all-trans-β-carotene is a natural pigment used in various industrial fields (food, cosmetics, pharmaceuticals, etc) and possesses the higher provitamin A activity, in respect to other carotenoids. All-trans-β-carotene is produced industrially by chemical and biotechnological means. For β-carotene biotechnological production in industrial scale mated cultures of Blakeslea trispora, a heterothallic fungus, are mainly used. Despite the intense research for β-carotene production by B. trispora, natural substrate utilization has not been extensively studied. Solid agro-food wastes such as cabbage, watermelon husk and peach peels from northern Greece as main carbon source into submerged B. trispora cultures for carotenoids production, was examined. The media containing only the agro-food waste (2-4) gave a biomass accumulation 7.77 ± 0.4 g/L, while a reference medium 1 with glucose (10 g/L) gave 4.65 ± 0.21 g/L. In another experiments series agro-food wastes were used with corn steep liquor and thiamine (media 6-8), giving a biomass accumulation and total carotenoid volumetric production 10.2 ± 2.41 g/L and 230.49 ± 22.97 mg/L, respectively. These are the higher values reported for solid wastes so far in respect to those obtained from a synthetic medium, with higher glucose concentration of 50 g/L where the correspondent values were 9.41 ± 1.18 g/L and 45.63 mg/L respectively. The results support that B. trispora is able to utilize, almost equivalently, different origin agro-food wastes for carotenoids production. Furthermore, β-carotene percentage in all examined cases was over 76%, as it was estimated by HPLC analysis, suggesting that these agro food wastes may be used for high purity, large scale β carotene production.  相似文献   
153.
Protozoa of the genus Leishmania are the causative agents of leishmaniosis. Although the polymerase chain reaction (PCR) has proved very effective in the detection of Leishmania DNA, a standardized method does not exist. In this study we attempt a comparative evaluation between one real time PCR (Method D), two in-house (Methods A and C), and a commercially available PCR assay (Method B) for the detection of Leishmania DNA, in order to support reliable diagnostic investigation of leishmaniosis. This evaluation was performed in regard to relative specificity and sensitivity, minimum detection limit (MDL), repeatability and reproducibility using cultured isolates and clinical samples. All the methods under study produced the expected result with the positive and negative controls. However with regard to clinical samples, Method C showed a statistically significant higher level of positivity. Relative sensitivity and specificity of Methods A, B and D in comparison to C was calculated respectively at 50.7%, 43%, 40%, and 90.8%, 93.4% and 89.5%. The MDL for Methods A-D was defined respectively at 30.7, 5, 3.7, and 5 promastigotes/ml. Repeatability and reproducibility were excellent in all cases with only the exception of Method A regarding reproducibility with a different brand of PCR reagents. The results that were recorded indicate that evaluation of PCR assays before their application for research and clinical diagnosis can provide useful evidence for their reliable application. Within this context the use of internal amplification controls and the confirmation of the specificity of the amplification product is recommended.  相似文献   
154.
Cadherins are a superfamily of transmembrane proteins that mediate calcium-dependent intercellular adhesion. T-cadherin (T-cad, H-cadherin or cadherin-13) is an atypical member, lacking transmembrane and cytosolic domains and possessing a glycosylphosphatidylinositol moiety that anchors T-cadherin to the plasma membrane. This article reviews current knowledge on the biomolecular characteristics of T-cadherin, its expression and function in different tissues in health and disease and its mechanisms of signal transduction. The structural characteristics of T-cadherin protein predict that it is unlikely to function as a “true” adhesion molecule in vivo. Studies from different fields suggest that it may act rather as a signalling receptor participating in recognition of the environment and regulation of cell motility, proliferation and phenotype. Cellular expression levels of T-cadherin in various tissues frequently correlate (be it negatively or positively) with the proliferative potential of the cells. Loss- and gain-of-function studies demonstrate the ability of T-cadherin to modulate cell motility and growth. Gathering evidence suggests that the “functional predestination” of T-cadherin is in control of tissue architecture through “guiding” navigation of moving structures, segregating functional tissue compartments and “guarding” integrity of functionally connected tissue layers.  相似文献   
155.
156.
Candida albicans is an opportunistic human fungal pathogen that normally resides in the gastrointestinal tract and on the skin as a commensal but can cause life-threatening invasive disease. Salmonella enterica serovar Typhimurium is a gram-negative bacterial pathogen that causes a significant amount of gastrointestinal infection in humans. Both of these organisms are also pathogenic to the nematode Caenorhabditis elegans, causing a persistent gut infection leading to worm death. In the present study, we used a previously developed C. elegans polymicrobial infection model to assess the interactions between S. Typhimurium and C. albicans. We observed that when C. elegans is infected with C. albicans and serovar Typhimurium, C. albicans filamentation is inhibited. The inhibition of C. albicans filamentation by S. Typhimurium in C. elegans appeared to be mediated by a secretary molecule, since filter-sterilized bacterial supernatant was able to inhibit C. albicans filamentation. In vitro coculture assays under planktonic conditions showed that S. Typhimurium reduces the viability of C. albicans, with greater effects seen at 37°C than at 30°C. Interestingly, S. Typhimurium reduces the viability of both yeast and filamentous forms of C. albicans, but the killing appeared more rapid for the filamentous cells. The antagonistic interaction was also observed in a C. albicans biofilm environment. This study describes the interaction between two diverse human pathogens that reside within the gastrointestinal tract and shows that the prokaryote, S. Typhimurium, reduces the viability of the eukaryote, C. albicans. Identifying the molecular mechanisms of this interaction may provide important insights into microbial pathogenesis.Candida albicans, the most common human fungal pathogen, is a prototypical opportunistic organism that lives harmlessly in the human gastrointestinal tract but has the ability to cause life-threatening invasive disease. Bloodstream infection with C. albicans remains the most lethal form (10), with translocation of the gastrointestinal mucosa being an important pathogenic mechanism, especially in hemato-oncology patients and those who have undergone abdominal surgery. A key virulence determinant of C. albicans is its ability to transition from yeast to a filamentous form (16, 17, 19, 22). This morphogenesis appears important for tissue adherence and invasion (22). Furthermore, C. albicans has the ability to form complex biofilms on medical devices (13) and on human mucosal surfaces, such as the gastrointestinal and bronchial mucosa. C. albicans biofilm formation has immense clinical and economic consequences (13).Recently the interactions between this important fungal pathogen and bacteria were described (11, 12, 18). These studies focus on the interaction between C. albicans and nonfermenting, gram-negative bacteria, such as Pseudomonas aeruginosa and Acinetobacter baumannii, whose interactions are likely found in the clinical environment, especially in the respiratory tracts of critically ill patients and on wounds of patients with burn injuries (7, 20). Of interest, these bacteria show antagonistic properties toward C. albicans, with a predilection toward reducing the viability of C. albicans filaments. In order to study these prokaryote-eukaryote interactions, our laboratory developed a polymicrobial infection model system using Caenorhabditis elegans as a substitute host (18). Previously, we showed that C. albicans causes a persistent lethal infection of the C. elegans intestinal tract (6). This leads to overwhelming C. albicans intestinal proliferation with subsequent filamentation through the worm cuticle (6). Given these characteristics, we decided to use this model to study the interaction of C. albicans with another intestinal pathogen, Salmonella enterica serovar Typhimurium.S. Typhimurium is a gram-negative organism that belongs to the Enterobacteriaceae family. It is a gastrointestinal tract pathogen of humans, being responsible for approximately 2 million to 4 million cases of enterocolitis each year in the United States (4, 8, 21, 23). During infection, S. Typhimurium competes with normal intestinal flora (23). Its virulence pathways are well described, and it has been shown to cause a persistent and lethal gut infection of the nematode C. elegans, similar to infection seen with C. albicans (1, 14). Given this and the fact that C. albicans is a common inhabitant of the human gastrointestinal tract, we used the C. elegans polymicrobial infection model (18) to study the interactions between S. Typhimurium and C. albicans. Understanding the interactions between these diverse organisms within the complex milieu of an intestinal tract may provide important pathogenic and therapeutic insights.  相似文献   
157.
Microbial penetration of the blood-brain barrier (BBB) into the central nervous system is essential for the development of meningitis. Considerable progress has been achieved in understanding the pathophysiology of meningitis, however, relatively little is known about the early inflammatory events occurring at the time of bacterial crossing of the BBB. We investigated, using real-time quantitative PCR, the expression of the neutrophil chemoattractants alpha-chemokines CXCL1 (Groalpha) and CXCL8 (IL-8), and of the monocyte chemoattractant beta-chemokine CCL2 (MCP-1) by human brain microvascular endothelial cells (HBMEC) in response to the meningitis-causing E. coli K1 strain RS218 or its isogenic mutants lacking the ability to bind to and invade HBMEC. A nonpathogenic, laboratory E. coli strain HB101 was used as a negative control. CXCL8 was shown to be significantly expressed in HBMEC 4 hours after infection with E. coli K1, while no significant alterations were noted for CXCL1 and CCL2 expression. This upregulation of CXCL8 was induced by E. coli K1 strain RS218 and its derivatives lacking the ability to bind and invade HBMEC, but was not induced by the laboratory strain HB101. In contrast, no upregulation of CXCL8 was observed in human umbilical vein endothelial cells (HUVEC) after stimulation with E. coli RS218. These findings indicate that the CXCL8 expression is the result of the specific response of HBMEC to meningitis-causing E. coli K1.  相似文献   
158.
BACKGROUND: Midday and evening twice-a-day quadruple therapy appears to be the most effective therapy for Helicobacter pylori infection in Northern Sardinia, a site where antibiotics resistance is common. Aim: The objective of our study was to estimate the efficacy, side-effects, and compliance of a quadruple therapy containing esomeprazole in a group of dyspeptic elderly patients. PATIENTS AND METHODS: Consecutive elderly patients positive for H. pylori infection and not previously treated for eradication were enrolled. Therapy consisted of esomeprazole 20 mg, tetracycline 500 mg, metronidazole 500 mg, and bismuth subcitrate tablets 240 mg, all twice-a-day with the midday and evening meals, for 10 days. Efficacy was evaluated using 13C-urea breath testing. Compliance was assessed after completing treatment and at follow up. Side effects were graded based on daily activities. RESULTS: Ninety-five dyspeptic patients (range 65-81 years), 52 men and 43 women, were enrolled. The intention-to-treat cure rate was 91% (81 of 89; 95% CI = 88-99%) and, 95% (81 of 85; 95% CI = 83-96%) per-protocol analysis. Compliance was excellent. Mild-moderate side effects occurred in 27 patients. CONCLUSIONS: Esomeprazole containing quadruple therapy was highly successful for initial eradication of H. pylori in elderly patients.  相似文献   
159.
Endoplasmic reticulum (ER) stress activated by perturbations in ER homeostasis induces the unfolded protein response (UPR) with chaperon Grp78 as the key activator of UPR signalling. The aim of UPR is to restore normal ER function; however prolonged or severe ER stress triggers apoptosis of damaged cells to ensure protection of the whole organism. Recent findings support an association of ER stress-induced apoptosis of vascular cells with cardiovascular pathologies. T-cadherin (T-cad), an atypical glycosylphosphatidylinositol-anchored member of the cadherin superfamily is upregulated in atherosclerotic lesions. Here we investigate the ability of T-cad to influence UPR signalling and endothelial cell (EC) survival during ER stress. EC were treated with a variety of ER stress-inducing compounds (thapsigargin, dithiothereitol, brefeldin A, tunicamycin, A23187 or homocysteine) and induction of ER stress validated by increases in levels of UPR signalling molecules Grp78 (glucose-regulated protein of 78 kDa), phospho-eIF2α (phosphorylated eukaryotic initiation factor 2α) and CHOP (C/EBP homologous protein). All compounds also increased T-cad mRNA and protein levels. Overexpression or silencing of T-cad in EC respectively attenuated or amplified the ER stress-induced increase in phospho-eIF2α, Grp78, CHOP and active caspases. Effects of T-cad-overexpression or T-cad-silencing on ER stress responses in EC were not affected by inclusion of either N-acetylcysteine (reactive oxygen species scavenger), LY294002 (phosphatidylinositol-3-kinase inhibitor) or SP6000125 (Jun N-terminal kinase inhibitor). The data suggest that upregulation of T-cad on EC during ER stress attenuates the activation of the proapoptotic PERK (PKR (double-stranded RNA-activated protein kinase)-like ER kinase) branch of the UPR cascade and thereby protects EC from ER stress-induced apoptosis.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号