首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3695篇
  免费   356篇
  4051篇
  2024年   10篇
  2023年   40篇
  2022年   90篇
  2021年   170篇
  2020年   65篇
  2019年   109篇
  2018年   117篇
  2017年   96篇
  2016年   188篇
  2015年   250篇
  2014年   242篇
  2013年   263篇
  2012年   370篇
  2011年   308篇
  2010年   180篇
  2009年   159篇
  2008年   214篇
  2007年   208篇
  2006年   177篇
  2005年   162篇
  2004年   171篇
  2003年   116篇
  2002年   134篇
  2001年   14篇
  2000年   18篇
  1999年   16篇
  1998年   28篇
  1997年   16篇
  1996年   14篇
  1995年   8篇
  1994年   16篇
  1993年   7篇
  1992年   7篇
  1991年   6篇
  1989年   3篇
  1988年   2篇
  1986年   3篇
  1985年   7篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1974年   4篇
  1970年   3篇
  1967年   2篇
  1902年   1篇
  1900年   2篇
  1899年   1篇
排序方式: 共有4051条查询结果,搜索用时 0 毫秒
21.
We compared the acute effect of insulin on the human colonic intestinal epithelial cell line CaCo-2 and the transformed human hepatic cell line HepG2. Over 24 h, 100 nM and 10 µM insulin significantly inhibited the secretion of apolipoprotein (apo) B-100 from HepG2 cells to 63 and 49% of control, respectively. Insulin had no effect on the secretion of apoB-48 from CaCo-2 cells. There was no effect of insulin on the cholesterol ester or free cholesterol concentrations in HepG2 or CaCo-2 cells. HepG2 and CaCo-2 cells bound insulin with high affinity, leading to similar stimulation of insulin receptor protein tyrosine kinase activation. Protein kinase C or mitogen-activated protein kinase activity in the presence or absence of insulin was not correlated with apoB-48 production in CaCo-2 cells. Therefore, insulin acutely decreases the secretion of apoB-100 in hepatic HepG2 cells, but does not acutely modulate the production or secretion of apoB-48 from CaCo-2 intestinal cells.  相似文献   
22.
Immunofluorescence microscopy is a valuable tool for analyzing protein expression and localization at a subcellular level thus providing information regarding protein function, interaction partners and its role in cellular processes. When performing sample fixation, parameters such as difference in accessibility of proteins present in various cellular compartments as well as the chemical composition of the protein to be studied, needs to be taken into account. However, in systematic and proteome-wide efforts, a need exists for standard fixation protocol(s) that works well for the majority of all proteins independent of subcellular localization. Here, we report on a study with the goal to find a standardized protocol based on the analysis of 18 human proteins localized in 11 different organelles and subcellular structures. Six fixation protocols were tested based on either dehydration by alcohols (methanol, ethanol or iso-propanol) or cross-linking by paraformaldehyde followed by detergent permeabilization (Triton X-100 or saponin) in three human cell lines. Our results show that cross-linking is essential for proteome-wide localization studies and that cross-linking using paraformaldehyde followed by Triton X-100 permeabilization successfully can be used as a single fixation protocol for systematic studies.  相似文献   
23.
D‐type cyclins predominantly regulate progression through the cell cycle by their interactions with cyclin‐dependent kinases (cdks). Here, we show that stimulating mitogenesis of Swiss 3T3 cells with phorbol esters or forskolin can induce divergent responses in the expression levels, localization and activation state of cyclin D1 and cyclin D3. Phorbol ester‐mediated protein kinase C stimulation induces S phase entry which is dependent on MAPK activation and increases the levels and activation of cyclin D1, whereas forskolin‐mediated cAMP‐dependent protein kinase A stimulation induces mitogenesis that is independent of MAPK, but dependent upon mTor and specifically increases the level and activation of cyclin D3. These findings uncover additional levels of complexity in the regulation of the cell cycle at the level of the D‐type cyclins and thus may have important therapeutic implications in cancers where specific D‐cyclins are overexpressed. J. Cell. Physiol. 225: 638–645, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
24.
Anticipating future changes of an ecosystem's dynamics requires knowledge of how its key communities respond to current environmental regimes. The Great Barrier Reef (GBR) is under threat, with rapid changes of its reef‐building hard coral (HC) community structure already evident across broad spatial scales. While several underlying relationships between HC and multiple disturbances have been documented, responses of other benthic communities to disturbances are not well understood. Here we used statistical modelling to explore the effects of broad‐scale climate‐related disturbances on benthic communities to predict their structure under scenarios of increasing disturbance frequency. We parameterized a multivariate model using the composition of benthic communities estimated by 145,000 observations from the northern GBR between 2012 and 2017. During this time, surveyed reefs were variously impacted by two tropical cyclones and two heat stress events that resulted in extensive HC mortality. This unprecedented sequence of disturbances was used to estimate the effects of discrete versus interacting disturbances on the compositional structure of HC, soft corals (SC) and algae. Discrete disturbances increased the prevalence of algae relative to HC while the interaction between cyclones and heat stress was the main driver of the increase in SC relative to algae and HC. Predictions from disturbance scenarios included relative increases in algae versus SC that varied by the frequency and types of disturbance interactions. However, high uncertainty of compositional changes in the presence of several disturbances shows that responses of algae and SC to the decline in HC needs further research. Better understanding of the effects of multiple disturbances on benthic communities as a whole is essential for predicting the future status of coral reefs and managing them in the light of new environmental regimes. The approach we develop here opens new opportunities for reaching this goal.  相似文献   
25.
Estuaries are productive ecosystems providing important habitat for a diversity of species, yet they also experience intense levels of anthropogenic development. To inform decision‐making, it is essential to understand the pathways of impacts of particular human activities, especially those that affect species such as salmon, which have high ecological, social‐cultural and economic values. Salmon systems provide an opportunity to build from the substantial body of research on responses to estuary developments and take stock of what is known. We conducted a systematic English‐language literature review on the responses of juvenile salmon to anthropogenic activities in estuaries and nearshore areas asking: what has been studied, where are the major knowledge gaps and how do stressors affect salmon? We found a substantial body of research (n = 167 studies; 1,369 comparative tests) to help understand responses of juvenile salmon to 24 activities and their 14 stressors. Across studies, 82% of the research was conducted in the eastern Pacific (Oregon and Washington, USA and British Columbia, Canada) showing a limited geographical scope. Using a semiquantitative approach to summarize the literature, including a weight‐of‐evidence metric, we found a range of results from low to moderate–high confidence in the consequences of the stressors. For example, we found moderate–high confidence in the negative impacts of pollutants and sea lice and moderate confidence in negative impacts from connectivity loss and changes in flow. Our results suggest that overall, multiple anthropogenic activities cause negative impacts across ecological scales. However, our results also reveal knowledge gaps resulting from minimal research on particular species (e.g. sockeye salmon), regions (e.g. Atlantic) or stressors (e.g. entrainment) that would be expedient areas for future research. With estuaries acting as a nexus of biological and societal importance and hotspots of ongoing development, the insights gained here can contribute to informed decision‐making.  相似文献   
26.
Experimental and Applied Acarology - Assessing the risk of tick-borne disease in areas with high visitor numbers is important from a public health perspective. Evidence suggests that tick presence,...  相似文献   
27.

Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects and early-onset hypertrophic cardiomyopathy with or without additional clinical features. A 23-year-old individual with cardiac and skeletal myopathy, neurological involvement, and combined deficiency of OXPHOS complexes in skeletal muscle was clinically and genetically investigated. Analysis of whole-exome sequencing data revealed a homozygous mutation in MRPL44 (c.467 T?>?G), which was not present in the biological father, and a region of homozygosity involving most of chromosome 2, raising the possibility of uniparental disomy. Short-tandem repeat and genome-wide SNP microarray analyses of the family trio confirmed complete maternal uniparental isodisomy of chromosome 2. Mitochondrial ribosome assembly and mitochondrial translation were assessed in patient derived-fibroblasts. These studies confirmed that c.467 T?>?G affects the stability or assembly of the large subunit of the mitochondrial ribosome, leading to impaired mitochondrial protein synthesis and decreased levels of multiple OXPHOS components. This study provides evidence of complete maternal uniparental isodisomy of chromosome 2 in a patient with MRPL44-related disease, and confirms that MRLP44 mutations cause a mitochondrial translation defect that may present as a multisystem disorder with neurological involvement.

  相似文献   
28.
The liquid–liquid phase separation (LLPS) of Tau has been postulated to play a role in modulating the aggregation property of Tau, a process known to be critically associated with the pathology of a broad range of neurodegenerative diseases including Alzheimer''s Disease. Tau can undergo LLPS by homotypic interaction through self‐coacervation (SC) or by heterotypic association through complex‐coacervation (CC) between Tau and binding partners such as RNA. What is unclear is in what way the formation mechanisms for self and complex coacervation of Tau are similar or different, and the addition of a binding partner to Tau alters the properties of LLPS and Tau. A combination of in vitro experimental and computational study reveals that the primary driving force for both Tau CC and SC is electrostatic interactions between Tau‐RNA or Tau‐Tau macromolecules. The liquid condensates formed by the complex coacervation of Tau and RNA have distinctly higher micro‐viscosity and greater thermal stability than that formed by the SC of Tau. Our study shows that subtle changes in solution conditions, including molecular crowding and the presence of binding partners, can lead to the formation of different types of Tau condensates with distinct micro‐viscosity that can coexist as persistent and immiscible entities in solution. We speculate that the formation, rheological properties and stability of Tau droplets can be readily tuned by cellular factors, and that liquid condensation of Tau can alter the conformational equilibrium of Tau.  相似文献   
29.
The N2A segment of titin is a main signaling hub in the sarcomeric I-band that recruits various signaling factors and processing enzymes. It has also been proposed to play a role in force production through its Ca2+-regulated association with actin. However, the molecular basis by which N2A performs these functions selectively within the repetitive and extensive titin chain remains poorly understood. Here, we analyze the structure of N2A components and their association with F-actin. Specifically, we characterized the structure of its Ig domains by elucidating the atomic structure of the I81-I83 tandem using x-ray crystallography and computing a homology model for I80. Structural data revealed these domains to present heterogeneous and divergent Ig folds, where I81 and I83 have unique loop structures. Notably, the I81-I83 tandem has a distinct rotational chain arrangement that confers it a unique multi-domain topography. However, we could not identify specific Ca2+-binding sites in these Ig domains, nor evidence of the association of titin N2A components with F-actin in transfected C2C12 myoblasts or C2C12-derived myotubes. In addition, F-actin cosedimentation assays failed to reveal binding to N2A. We conclude that N2A has a unique architecture that predictably supports its selective recruitment of binding partners in signaling, but that its mechanical role through interaction with F-actin awaits validation.  相似文献   
30.
Restoration efforts will be taking place over the next decade(s) in the largest scope and capacity ever seen. Immense commitments, goals, and budgets are set, with impactful wide‐reaching potential benefits for people and the environment. These are ambitious aims for a relatively new branch of science and practice. It is time for restoration action to scale up, the legacy of which could impact over 350 million hectares targeted for the U.N. Decade on Ecosystem Restoration. However, restoration still proceeds on a case‐by‐case, trial by error basis and restoration outcomes can be variable even under similar conditions. The ability to put each case into context—what about it worked, what did not, and why—is something that the synthesis of data across studies can facilitate. The link between data synthesis and predictive capacity is strong. There are examples of extremely ambitious and successful efforts to compile data in structured, standardized databases which have led to valuable insights across regional and global scales in other branches of science. There is opportunity and challenge in compiling, standardizing, and synthesizing restoration monitoring data to inform the future of restoration practice and science. Through global collation of restoration data, knowledge gaps can be addressed and data synthesized to advance toward a more predictive science to inform more consistent success. The interdisciplinary potential of restoration ecology sits just over the horizon of this decade. Through truly collaborative synthesis across foci within the restoration community, we have the opportunity to rapidly reach that potential and achieve extraordinary outcomes together.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号