首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8118篇
  免费   830篇
  2023年   49篇
  2022年   112篇
  2021年   210篇
  2020年   91篇
  2019年   135篇
  2018年   145篇
  2017年   132篇
  2016年   247篇
  2015年   343篇
  2014年   373篇
  2013年   412篇
  2012年   563篇
  2011年   500篇
  2010年   292篇
  2009年   271篇
  2008年   345篇
  2007年   340篇
  2006年   312篇
  2005年   284篇
  2004年   320篇
  2003年   235篇
  2002年   234篇
  2001年   135篇
  2000年   160篇
  1999年   149篇
  1998年   103篇
  1997年   85篇
  1996年   80篇
  1995年   51篇
  1994年   68篇
  1993年   53篇
  1992年   99篇
  1991年   99篇
  1990年   105篇
  1989年   104篇
  1988年   110篇
  1987年   95篇
  1986年   85篇
  1985年   94篇
  1984年   108篇
  1983年   79篇
  1982年   95篇
  1981年   67篇
  1980年   47篇
  1979年   70篇
  1978年   68篇
  1977年   50篇
  1974年   61篇
  1973年   62篇
  1972年   48篇
排序方式: 共有8948条查询结果,搜索用时 15 毫秒
961.
The nucleotide sequence of a highly repetitive sequence region upstream from the human insulin gene is reported. The length of this region varies between alleles in the population, and appears to be stably transmitted to the next generation in a Mendelian fashion. There is no significant correlation between the length of this sequence and two types of diabetes mellitus. We observe variation in the cleavability of a BglI recognition site downstream from the human insulin gene, which is probably due to variable nucleotide modification. This presumed modification state appears not to be inherited, and varies between tissues within an individual and between individuals for a given tissue. Both alleles in a given tissue DNA sample are modified to the same extent.  相似文献   
962.
Kinetic analysis of PFK-1 from rodent AS-30D, and human HeLa and MCF-7 carcinomas revealed sigmoidal [fructose 6-phosphate, Fru6P]-rate curves with different V(m) values when varying the allosteric activator fructose 2,6 bisphosphate (Fru2,6BP), AMP, Pi, NH(4)(+), or K(+). The rate equation that accurately predicted this behavior was the exclusive ligand binding concerted transition model together with non-essential hyperbolic activation. PFK-1 from rat liver and heart also exhibited the mixed cooperative-hyperbolic kinetic behavior regarding activators. Lowering pH induced decreased affinity for Fru6P, Fru2,6BP, citrate, and ATP (as inhibitor); as well as decreased V(m) and increased content of inactive (T) enzyme forms. High K(+) prompted increased (Fru6P) or decreased (activators) affinities; increased V(m); and increased content of active (R) enzyme forms. mRNA expression analysis and nucleotide sequencing showed that the three PFK-1 isoforms L, M, and C are transcribed in the three carcinomas. However, proteomic analysis indicated the predominant expression of L in liver, of M in heart and MCF-7 cells, of L>M in AS-30D cells, and of C in HeLa cells. PFK-1M showed the highest affinities for F6P and citrate and the lowest for ATP (substrate) and F2,6BP; PFK-1L showed the lowest affinity for F6P and the highest for F2,6BP; and PFK-1C exhibited the highest affinity for ATP (substrate) and the lowest for citrate. Thus, the present work documents the kinetic signature of each PFK-1 isoform, and facilitates the understanding of why this enzyme exerts significant or negligible glycolysis flux-control in normal or cancer cells, respectively, and how it regulates the onset of the Pasteur effect.  相似文献   
963.
HIV-1 mutations, which reduce or abolish CTL responses against virus-infected cells, are frequently selected in acute and chronic HIV infection. Among population HIV-1 sequences, immune selection is evident as human leukocyte antigen (HLA) allele-associated substitutions of amino acids within or near CD8 T-cell epitopes. In these cases, the non-adapted epitope is susceptible to immune recognition until an escape mutation renders the epitope less immunogenic. However, several population-based studies have independently identified HLA-associated viral changes, which lead to the formation of a new T-cell epitope, suggesting that the immune responses that these variants or 'neo-epitopes' elicit provide an evolutionary advantage to the virus rather than the host. Here, we examined the functional characteristics of eight CD8 T-cell responses that result from viral adaptation in 125 HLA-genotyped individuals with chronic HIV-1 infection. Neo-epitopes included well-characterized immunodominant epitopes restricted by common HLA alleles, and in most cases the T-cell responses against the neo-epitope showed significantly greater functional avidity and higher IFNγ production than T cells for non-adapted epitopes, but were not more cytotoxic. Neo-epitope formation and emergence of cognate T-cell response coincident with a rise in viral load was then observed in vivo in an acutely infected individual. These findings show that HIV-1 adaptation not only abrogates the immune recognition of early targeted epitopes, but may also increase immune recognition to other epitopes, which elicit immunodominant but non-protective T-cell responses. These data have implications for immunodominance associated with polyvalent vaccines based on the diversity of chronic HIV-1 sequences.  相似文献   
964.
Sialidases or neuramidases are glycoside hydrolases removing terminal sialic acid residues from sialo-glycoproteins and sialo-glycolipids. Viral neuraminidases (NAs) have been extensively characterized and represent an excellent target for antiviral therapy through the synthesis of a series of competitive inhibitors that block the release of newly formed viral particles from infected cells. The human cytosolic sialidase NEU2 is the only mammalian enzyme structurally characterized and represents a valuable model to study the specificity of novel NA inhibitory drugs. Moreover, the availability of NEU2 3D structure represents a pivotal step toward the characterization of the molecular basis of natural substrates recognition by the enzyme. In this perspective, we have carried out a study of molecular docking of NEU2 active site using natural substrates of increasing complexity. Moreover, selective mutations of the residues putatively involved into substrate(s) interaction/recognition have been performed, and the resulting mutant enzymes have been preliminary tested for their catalytic activity and substrate specificity. We found that Q270 is involved in the binding of the disaccharide α(2,3) sialyl-galactose, whereas K45 and Q112 bind the distal glucose of the trisaccharide α(2,3) sialyl-lactose, corresponding to the oligosaccharide moiety of GM3 ganglioside. In addition, E218, beside D46, is proved to be a key catalytic residue, being, together with Y334, the second member of the nucleophile pair required for the catalysis. Overall, our results point out the existence of a dynamic network of interactions that are possibly involved in the recognition of the glycans bearing sialic acid.  相似文献   
965.
966.
967.
Neuropeptide Y (NPY) is widely expressed in the central and peripheral nervous systems and is proliferative for a range of cells types in vitro. NPY plays a key role in regulating adult hippocampal neurogenesis in vivo under both basal and pathological conditions, although the underlying mechanisms are largely unknown. We have investigated the role of nitric oxide (NO) on the neurogenic effects of NPY. Using postnatal rat hippocampal cultures, we show that the proliferative effect of NPY on nestin(+) precursor cells is NO-dependent. As well as the involvement of neuronal nitric-oxide synthase, the proliferative effect is mediated via an NO/cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG) and extracellular signal-regulated kinase (ERK) 1/2 signaling pathway. We show that NPY-mediated intracellular NO signaling results in an increase in neuroproliferation. By contrast, extracellular NO had an opposite, inhibitory effect on proliferation. The importance of the NO-cGMP-PKG signaling pathway in ERK1/2 activation was confirmed using Western blotting. This work unites two significant modulators of hippocampal neurogenesis within a common signaling framework and provides a mechanism for the independent extra- and intracellular regulation of postnatal neural precursors by NO.  相似文献   
968.
Actin cytoskeletal remodeling plays a critical role in transforming the morphology of subcellular structures across various cell types. In the brain, restructuring of dendritic spines through actin cytoskeleletal reorganization is implicated in the regulation of synaptic efficacy and the storage of information in neural circuits. However, the upstream pathways that provoke actin-based spine changes remain only partly understood. Here we show that EphA receptor signaling remodels spines by triggering a sequence of events involving actin filament rearrangement and synapse/spine reorganization. Rapid EphA signaling over minutes activates the actin filament depolymerizing/severing factor cofilin, alters F-actin distribution in spines, and causes transient spine elongation through the phosphatases slingshot 1 (SSH1) and calcineurin/protein phosphatase 2B (PP2B). This early phase of spine extension is followed by synaptic reorganization events that take place over minutes to hours and involve the relocation of pre/postsynaptic components and ultimately spine retraction. Thus, EphA receptors utilize discrete cellular and molecular pathways to promote actin-based structural plasticity of excitatory synapses.  相似文献   
969.
Raf kinase inhibitor protein (RKIP) regulates growth and differentiation signaling of mitogen-activated protein kinases (MAPK), GRK2 and NF-kappaB pathways each of which regulates cytotrophoblast differentiation and normal placental development. We show here that RKIP is expressed in human normal and preeclampic placentas as detected by immunostaining. RKIP was detected in villous cytotrophoblast in normal placenta and switched to syncytiotrophoblast in pre-eclampsia (PE)-complicated pregnancies. RKIP was also localized in extravillous cytotrophoblast of cell islands and cell columns both in normal and in PE placentas, although staining was less uniform in the latter specimens. In order to test RKIP involvement in cytotrophoblast function, we performed in vitro studies on HTR-8/SVneo cells, a first trimester cytotrophoblast cell line. We show that the RKIP inhibitor locostatin reduces ERK phosphorylation and impairs HTR-8/SV neo cells motility in wound closure experiments. We also document the presence of GRK2 mRNA, the reduction of phosphorylated RKIP expression by locostatin and the induction of PAI mRNA expression in HTR-8/SV neo cells, suggesting the involvement of GRK2 and NF-kappaB pathways in these cells. In conclusion, our work provides evidence that RKIP is a novel factor expressed in cytotrophoblast cells where it likely regulates cell migration.  相似文献   
970.
Intracellular triacylglycerol (TG) hydrolysis and fatty acid release by the white adipose tissue (WAT) during a fast is stimulated by counter-regulatory factors acting in concert, although how adipocytes integrate these lipolytic inputs is unknown. We tested the role of angiopoietin-like 4 (Angptl4), a secreted protein induced by fasting or glucocorticoid treatment, in modulating intracellular adipocyte lipolysis. Glucocorticoid receptor blockade prevented fasting-induced tissue Angptl4 expression and WAT TG hydrolysis in mice, and TG hydrolysis induced by fasts of 6 or 24 h was greatly reduced in mice lacking Angptl4 (Angptl4(-/-)). Glucocorticoid treatment mimicked the lipolytic effects of fasting, although with slower kinetics, and this too required Angptl4. Thus, fasting-induced WAT TG hydrolysis requires glucocorticoid action and Angptl4. Both fasting and glucocorticoid treatment also increased WAT cAMP levels and downstream phosphorylation of lipolytic enzymes. Angptl4 deficiency markedly reduced these effects, suggesting that Angptl4 may stimulate lipolysis by modulating cAMP-dependent signaling. In support of this, cAMP levels and TG hydrolysis were reduced in primary Angptl4(-/-) murine adipocytes treated with catecholamines, which stimulate cAMP-dependent signaling to promote lipolysis, and was restored by treatment with purified human ANGPTL4. Remarkably, human ANGPTL4 treatment alone increased cAMP levels and induced lipolysis in these cells. Pharmacologic agents revealed that Angptl4 modulation of cAMP-dependent signaling occurs upstream of adenylate cyclase and downstream of receptor activation. We show that Angptl4 is a glucocorticoid-responsive mediator of fasting-induced intracellular lipolysis and stimulates cAMP signaling in adipocytes. Such a role is relevant to diseases of aberrant lipolysis, such as insulin resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号