首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5718篇
  免费   576篇
  国内免费   1篇
  2023年   68篇
  2022年   128篇
  2021年   294篇
  2020年   138篇
  2019年   166篇
  2018年   189篇
  2017年   162篇
  2016年   249篇
  2015年   413篇
  2014年   373篇
  2013年   402篇
  2012年   546篇
  2011年   485篇
  2010年   268篇
  2009年   211篇
  2008年   318篇
  2007年   283篇
  2006年   243篇
  2005年   237篇
  2004年   188篇
  2003年   150篇
  2002年   120篇
  2001年   45篇
  2000年   36篇
  1999年   37篇
  1998年   33篇
  1997年   18篇
  1996年   22篇
  1995年   21篇
  1994年   13篇
  1993年   17篇
  1992年   20篇
  1991年   19篇
  1990年   14篇
  1989年   14篇
  1988年   13篇
  1987年   22篇
  1986年   23篇
  1985年   15篇
  1984年   12篇
  1983年   17篇
  1982年   13篇
  1980年   13篇
  1979年   12篇
  1977年   15篇
  1975年   12篇
  1974年   13篇
  1970年   13篇
  1969年   16篇
  1967年   11篇
排序方式: 共有6295条查询结果,搜索用时 421 毫秒
991.
Human immunodeficiency virus type 1 (HIV-1) elite controllers (EC) maintain viremia below the limit of commercial assay detection (<50 RNA copies/ml) in the absence of antiviral therapy, but the mechanisms of control remain unclear. HLA-B57 and the closely related allele B*5801 are particularly associated with enhanced control and recognize the same Gag240-249 TW10 epitope. The typical escape mutation (T242N) within this epitope diminishes viral replication capacity in chronically infected persons; however, little is known about TW10 epitope sequences in residual replicating viruses in B57/B*5801 EC and the extent to which mutations within this epitope may influence steady-state viremia. Here we analyzed TW10 in a total of 50 B57/B*5801-positive subjects (23 EC and 27 viremic subjects). Autologous plasma viral sequences from both EC and viremic subjects frequently harbored the typical cytotoxic T-lymphocyte (CTL)-selected mutation T242N (15/23 sequences [65.2%] versus 23/27 sequences [85.1%], respectively; P = 0.18). However, other unique mutants were identified in HIV controllers, both within and flanking TW10, that were associated with an even greater reduction in viral replication capacity in vitro. In addition, strong CTL responses to many of these unique TW10 variants were detected by gamma interferon-specific enzyme-linked immunospot assay. These data suggest a dual mechanism for durable control of HIV replication, consisting of viral fitness loss resulting from CTL escape mutations together with strong CD8 T-cell immune responses to the arising variant epitopes.A subset of human immunodeficiency virus type 1 (HIV-1)-infected persons who control viremia to below the limit of detection (<50 RNA copies/ml plasma) without antiviral therapy has been termed elite controllers/suppressors (EC) (2, 3, 6, 13, 32). Some of these individuals have been infected in excess of 30 years, indicating prolonged containment of HIV replication, but the mechanisms associated with this extreme viremia control remain elusive (13). Among EC, certain HLA class I alleles are overrepresented, in particular HLA-B57, strongly suggesting that HIV-1-specific cytotoxic T-lymphocyte (CTL) responses restricted by these alleles may be crucial for viremia control (16, 29, 32). However, to date, there has been no clear explanation as to why some subjects can control viremia but others cannot, even when carrying the same allegedly protective HLA alleles. Moreover, the characteristics of virus-specific immune responses as well as the impact of viral escape mutations on in vitro replicative fitness in persons with different disease outcomes remain unclear.Growing numbers of studies suggest that CTL targeting Gag, particularly the p24 capsid protein, play an important role in controlling viremia (7, 15, 22, 26, 32, 33, 38). Indeed, the most protective HLA class I allele, B57, which is present in over 40% of EC (32), restricts four immunodominant CTL epitopes in the p24 capsid protein. Previous studies have failed to find differences in the recognition of Gag epitopes or in gamma interferon (IFN-γ) responses to HIV proteins between B57-positive (B57+) long-term nonprogressors and B57+ progressors (28). Other studies have shown differences in the frequency of polyfunctional CD8+ T cells between B57+ EC and B57+ progressors (5); likewise, differences in the frequency of IFN-γ/interleukin-2-producing CD8+ T cells between controllers and progressors with protective HLA alleles were reported (16). Recently, Bailey et al. reported that plasma viruses in B57+ EC can harbor CTL escape mutations in the Gag protein, and in some cases these autologous variants were recognized by CTL (3). However, since there were no comparisons to progressors, it is unclear whether the viral variants that were detected or the apparent de novo CTL responses to the variant viruses are characteristic features among B57+ persons who maintain persistent control.Of the four immunodominant Gag CTL epitopes restricted by HLA-B57, TW10 (TSTLQEQIGW [Gag residues 240 to 249]) is known to be the earliest target in acute infection (1, 11, 36), therefore likely playing an important role in defining the plasma viral load set point. This epitope is also known to be presented by the closely related B*5801 allele, which is also associated with viral control (21). One of the most frequently detected mutations within this epitope, T242N, is known to occur rapidly and almost universally after acute infection in persons expressing HLA-B57/B*5801 (11, 17, 23). The same mutation has been shown to have a negative impact on viral replication capacity (VRC) by both clinical observation and in vitro experiments (8, 23, 25). Moreover, as plasma viral load increases, compensatory mutations accumulate, restoring VRC to some extent (8). Additional studies, predominantly with children, indicated that some TW10 escape variants may be targeted by specific immune responses (17). Together, these data suggest a hypothesis to explain the diverse disease courses among B57+ subjects, namely, that a combination of fitness cost by CTL escape from the TW10 response, variable accumulation of compensatory mutations, and variable generation of specific CTL responses to the new variant influence plasma viral loads.In this study, we investigated plasma viral sequences and IFN-γ-specific enzyme-linked immunospot (ELISPOT) assay responses to autologous Gag TW10 sequences in HLA-B57/B*5801-positive EC and compared these data to those obtained from persons with detectable viremia. Our results indicate that the TW10 T242N mutation does not differentiate HLA-B57/B*5801 EC from those with viremia and that CTL responses to this variant epitope are frequently detected in both viremic and aviremic subjects. However, some rare variants within and flanking this epitope were observed exclusively in HIV controllers, most of which not only reduced VRC but also were recognized by specific CTL at a high magnitude. These data suggest that the additive effects of both CTL-mediated selection for less fit viral variants and CD8 T-cell responses to the variant viruses contribute to strict viremia control in HLA-B57/B*5801-positive controllers.  相似文献   
992.
Penetration of the endoplasmic reticulum (ER) membrane by polyomavirus (PyV) is a decisive step in virus entry. We showed previously that the ER-resident factor ERp29 induces the local unfolding of PyV to initiate the ER membrane penetration process. ERp29 contains an N-terminal thioredoxin domain (NTD) that mediates its dimerization and a novel C-terminal all-helical domain (CTD) whose function is unclear. The NTD-mediated dimerization of ERp29 is critical for its unfolding activity; whether the CTD plays any role in PyV unfolding is unknown. We now show that three hydrophobic residues within the last helix of the ERp29 CTD that were individually mutated to either lysine or alanine abolished ERp29's ability to stimulate PyV unfolding and infection. This effect was not due to global misfolding of the mutant proteins, as they dimerize and do not form aggregates or display increased protease sensitivity. Moreover, the mutant proteins stimulated secretion of the secretory protein thyroglobulin with an efficiency similar to that of wild-type ERp29. Using a cross-linking coimmunoprecipitation assay, we found that the physical interaction of the ERp29 CTD mutants with PyV is inefficient. Our data thus demonstrate that the ERp29 CTD plays a crucial role in PyV unfolding and infection, likely by serving as part of a substrate-binding domain.  相似文献   
993.
The TZM-bl cell line that is commonly used to assess neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) was recently reported to be contaminated with an ecotropic murine leukemia virus (MLV) (Y. Takeuchi, M. O. McClure, and M. Pizzato, J. Virol. 82:12585-12588, 2008), raising questions about the validity of results obtained with this cell line. Here we confirm this observation and show that HIV-1 neutralization assays performed with a variety of serologic reagents in a similar cell line that does not harbor MLV yield results that are equivalent to those obtained in TZM-bl cells. We conclude that MLV contamination has no measurable effect on HIV-1 neutralization when TZM-bl cells are used as targets for infection.It was recently reported that TZM-bl cells, which are commonly used to assess neutralizing antibodies (Abs) against human immunodeficiency virus type 1 (HIV-1), are contaminated with an ecotropic murine leukemia virus (MLV) (22). TZM-bl (also called JC.53bl-13) is a HeLa cell derivative that was engineered by amphotropic retroviral transduction to express CD4 and CCR5 (17) and was further engineered with an HIV-1-based vector to contain Tat-responsive reporter genes for firefly luciferase (Luc) and Escherichia coli β-galactosidase (24). These engineered features made TZM-bl cells highly susceptible to HIV-1 infection in a readily quantifiable assay for neutralizing Abs. Many published studies used this cell line for assessments of HIV-1 neutralization; these include several recent reports describing the magnitude, breadth, and epitope specificity of the neutralizing Ab response in infected individuals (14, 18-20), neutralization escape (25), and the neutralization phenotype of transmitted/founder viruses (10). TZM-bl cells are also gaining popularity for assessments of vaccine-elicited neutralizing Ab responses (13). The validity of these and other published results, together with a rationale for the continued use of TZM-bl cells in assessing neutralizing Abs against HIV-1, are very dependent on establishing to what extent, if any, MLV contamination affects the outcome of the assay.It was suggested that ecotropic MLV entered TZM-bl cells via the progenitor JC.53 cell line as an amphotropic MLV pseudotype (22). In this regard, JC.53 cells were constructed from HeLa cells in two stages by using ping-pong technology to amplify the pSFF vector derived from the replication-defective and highly truncated Friend spleen focus-forming virus (3). When used with this vector, this procedure has previously resulted in stable vector expression (17) without formation of replication-competent MLV recombinants (8, 11). A panel of HeLa-CD4 clones was made that express different amounts of CD4 and where the high-expression HI-J clone was used to make a derivative panel of clones (termed JC), including JC.53, that expressed diverse levels of CCR5 (9, 16, 17). In addition, the HeLa-CD4 clone HI-R that expressed low levels of CD4 was used to make another panel of CCR5-expressing clones (termed RC). To investigate this newly reported issue, cell extracts from these clonal panels and from TZM-bl cells were analyzed for MLV Gag antigens by Western immunoblotting. Representative data, as shown in Fig. Fig.1A,1A, confirm that JC.53 and TZM-bl cells express MLV Gag antigens, whereas the progenitor HI-J clone of HeLa-CD4 cells and many but not all of the other HeLa-CD4/CCR5 clones in the JC panel lack MLV antigens.Open in a separate windowFIG. 1.Characterization of HeLa clones for MLV Gag expression, HIV-1 susceptibility, and cell surface expression of HIV-1 fusion receptors. (A) MLV Gag antigen expression in HeLa cells and derivative clones expressing CD4 or CD4 and CCR5. Cell lysates were prepared from the cell clones and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting with Abs to MLV Gag antigens (upper blot). The lysates were also probed with anti-tubulin antibodies (lower blot). Lane 1, HeLa cells; lanes 2 and 3, HeLa CD4 clones HI-R and HI-J, respectively; lanes 4, 5, and 6, HeLa-CD4/CCR5 clones JC.10, JC.48, and JC.53, respectively; lane 7, TZM-bl cells; lane 8, psi-2 packaging cells positive for MLV Gag. (B) HIV-1 infectivity on the HeLa-CD4/CCR5 JC panel. Target cells were infected with HIV-1 isolate JRCSF that had been produced from clone JC.53 cells (black) or with JRCSF produced from transfected HEK293T cells (red). The target cells were also infected with the JR-FL isolate produced from peripheral blood mononuclear cells (PBMC; green). The HeLa-CD4/CCR5 target cells had a CCR5 expression range of 2 × 103 (clone JC.10) to 1.3 × 105 (clones JC.53 and TZM-bl) CCR5 molecules/cell. Each set of three data points at a given CCR5 expression level represents a single HeLa-CD4/CCR5 JC clone. None of the HIV-1 isolates was able to infect HeLa-CD4 cells lacking CCR5. The blue asterisks indicate clones that are negative for MLV Gag proteins. Clones JC.48 (used for subsequent infection and neutralization assays) and JC.53 (progenitor of TZM-bl cells) are specifically labeled. (C) Surface expression of CD4, CCR5, and CXCR4 on TZM-bl and JC.48 cells was assessed by flow cytometry using the same stocks of cells that were used in infection and neutralization assays in Fig. Fig.2.2. Surface staining was performed with phycoerythrin-conjugated mouse monoclonal Abs to CD4, CCR5 (CD195), and CXCR4 (CD184). Background staining was performed with isotype-matched control Abs. All Abs for flow cytometry were purchased from BD Biosciences Pharmingen (San Diego, CA). Results are shown as the mean fluorescence intensity (MFI) of positive cells. Most cells (>90%) stained positive in each case.Initial studies of HI-R cells and other clonal panels that were made using these methods also suggested a lack of MLV antigens (data not shown). We then determined the titers of replication-competent HIV-1JRCSF preparations using JC.53 and TZM-bl cells as well as other representative HeLa-CD4/CCR5 clones in the JC panel. The results are plotted in Fig. Fig.1B1B as a function of cellular CCR5 content. Clones having more than a low threshold level of ∼8,000 CCR5/cell were equally susceptible to infection regardless of whether they contained MLV antigens, clearly demonstrating that HIV-1JRCSF titers were not significantly affected by MLV. As expected, titers obtained with JC.53 and TZM-bl cells were also equivalent. In addition, these results demonstrate that HIV-1JRCSF preparations made in JC.53 cells and in cells lacking MLV antigens (i.e., HEK293T cells and human peripheral blood mononuclear cells) were unable to infect HeLa cells lacking CCR5. The results in Fig. Fig.1B1B were expected because previous studies demonstrated that ecotropic MLVs cannot infect human cells or even bind to the human CAT-1 receptor paralog (1, 6, 21, 23). Moreover, it has been shown that ecotropic host range MLVs do not interfere with superinfection by any retrovirus capable of infecting human cells, including gibbon ape leukemia virus, amphotropic MLV, baboon endogenous virus, and feline leukemia virus subgroup C (21). In view of the report by Takeuchi et al. (22), we were surprised to find that JC.53 and TZM-bl cells express very small amounts of ecotropic MLV Env glycoproteins, as indicated by immunofluorescence microscopy and by their resistance to complement-dependent killing by a cytotoxic antiserum specific for MLV envelope glycoproteins (6). Nevertheless, the cell clones that contained MLV Gag all released ecotropic host range virions that replicated in murine NIH 3T3 cells but not in human cells (data not shown).To determine whether MLV affects the measurement of neutralizing Abs in TZM-bl cells, parallel assays were performed in TZM-bl and JC.48 cells; these latter cells were determined to be MLV free by Western blot analysis (Fig. (Fig.1)1) and by an inability to transfer MLV infection to NIH 3T3 cells (data not shown). Because JC.48 cells express CCR5 at somewhat lower levels than JC.53 cells (∼2-fold lower; Fig. Fig.1B),1B), it may be expected that they would be less susceptible to HIV-1 infection than are TZM-bl cells. Differences in susceptibility to HIV-1 infection may require the use of adjusted virus doses to achieve equivalent assay performance when measuring neutralizing Abs. Indeed, levels of CD4 and CCR5 were approximately twofold lower on JC.48 cells than on TZM-bl cells, whereas levels of CXCR4 were approximately equal (Fig. (Fig.1C).1C). We therefore measured the susceptibility of both cell lines to infection by three molecularly cloned Env-pseudotyped viruses, each bearing an Env from a different CCR5-tropic HIV-1 subtype B virus (SF162.LS, Bal.26, and QH0692.42). Infection was quantified by Luc activity expressed as relative luminescence units (RLU). Because JC.48 cells do not contain a reporter gene, the Env-pseudotyped viruses were prepared by cotransfection with the NL4-3.Luc.R-E- reporter backbone plasmid (7). Identical Luc-containing, Env-pseudotyped virus stocks were used in both cell lines. As shown in Fig. Fig.2A,2A, the infectivity of each pseudotyped virus was somewhat diminished in JC.48 cells compared to the infectivity in TZM-bl cells. Nonetheless, the levels of infectivity in JC.48 cells remained acceptable for neutralization assays.Open in a separate windowFIG. 2.HIV-1 infectivity and neutralization in TZM-bl and JC.48.CD4.CCR5 cells. (A) TZM-bl and JC.48 cells were incubated with serial fourfold dilutions (11 dilutions total) of three HIV-1 Env-pseudotyped viruses in quadruplicate in 96-well culture plates. Luc activity was measured after 48 h of incubation and is expressed as RLU after subtraction of background luminescence from cell control wells. Squares, TZM-bl cells; triangles, JC.48 cells. (B) Neutralization assays were performed with three HIV-1 Env-pseudotyped viruses in either TZM-bl or JC.48 cells. Input virus doses were adjusted to yield equivalent infectivity in both cell lines. Black bars, TZM-bl; gray bars, JC.48. Top panel: sCD4, monoclonal Abs, and HIVIG (purified immunoglobulin G from pooled HIV-1-positive plasmas). Bottom panel: individual HIV-1-positive plasma samples. The same three stocks of virus were used in both experiments. All three Env-pseudotyped viruses were prepared with the NL4-3.Luc.R-E- reporter backbone plasmid.With this information in hand, neutralization assays were performed in JC.48 and TZM-bl cells using adjusted virus doses that yielded equivalent infectivity levels in both cell lines. These neutralization assays were performed in a 96-well format as described previously (12), where the 50% inhibitory dose (ID50) was reported as either the concentration or sample dilution at which RLU were reduced by 50% compared to RLU in virus control wells (cells plus virus without test sample) after subtraction of background RLU from cell control wells (cells only). A wide variety of serologic reagents was tested, including sCD4, a monoclonal Ab to the CD4 binding site of gp120 (immunoglobulin G1b12) (15); a monoclonal Ab that recognizes a glycan-specific epitope on gp120 (2G12) (5); two monoclonal Abs that recognize adjacent epitopes in the membrane proximal external region of gp41 (2F5 and 4E10) (2, 4); and serum samples from seven antiretroviral-naive HIV-1-infected individuals. As shown in Fig. Fig.2B,2B, results in the two cell lines were similar for all three viruses and all serologic reagents tested. Indeed, ID50 values in the two cell types agreed within twofold, which is within the normal range of variability of the assay. These results indicate that equivalent neutralization results were obtained in both cell lines.In summary, we found no evidence that ecotropic MLV contamination in TZM-bl cells has a measurable effect on HIV-1 neutralization when these cells are used as targets for infection. This outcome indicates that the presence of ecotropic MLV in TZM-bl cells does not alter the ability of Ab to neutralize HIV-1, nor does it interfere with the detection of neutralization by using HIV-1 Tat-regulated reporter gene expression in a single-cycle infection assay. However, we discourage the use of TZM-bl cells to generate HIV-1 stocks, because the latter would likely be contaminated with ecotropic MLV and contain pseudovirions with mixtures of HIV-1 and ecotropic MLV Env glycoproteins. For this reason, we have begun efforts to produce an uncontaminated, second-generation panel of HeLa-CD4/CCR5 cell clones that express diverse amounts of CCR5 and to isolate a TZM-bl variant lacking MLV antigens.  相似文献   
994.
Recently, we identified a novel signaling pathway involving Epac, Rap, and phospholipase C (PLC)epsilon that plays a critical role in maximal beta-adrenergic receptor (betaAR) stimulation of Ca2+-induced Ca2+ release (CICR) in cardiac myocytes. Here we demonstrate that PLCepsilon phosphatidylinositol 4,5-bisphosphate hydrolytic activity and PLCepsilon-stimulated Rap1 GEF activity are both required for PLCepsilon-mediated enhancement of sarcoplasmic reticulum Ca2+ release and that PLCepsilon significantly enhances Rap activation in response to betaAR stimulation in the heart. Downstream of PLCepsilon hydrolytic activity, pharmacological inhibition of PKC significantly inhibited both betaAR- and Epac-stimulated increases in CICR in PLCepsilon+/+ myocytes but had no effect in PLCepsilon-/- myocytes. betaAR and Epac activation caused membrane translocation of PKCepsilon in PLCepsilon+/+ but not PLCepsilon-/- myocytes and small interfering RNA-mediated PKCepsilon knockdown significantly inhibited both betaAR and Epac-mediated CICR enhancement. Further downstream, the Ca2+/calmodulin-dependent protein kinase II (CamKII) inhibitor, KN93, inhibited betaAR- and Epac-mediated CICR in PLCepsilon+/+ but not PLCepsilon-/- myocytes. Epac activation increased CamKII Thr286 phosphorylation and enhanced phosphorylation at CamKII phosphorylation sites on the ryanodine receptor (RyR2) (Ser2815) and phospholamban (Thr17) in a PKC-dependent manner. Perforated patch clamp experiments revealed that basal and betaAR-stimulated peak L-type current density are similar in PLCepsilon+/+ and PLCepsilon-/- myocytes suggesting that control of sarcoplasmic reticulum Ca2+ release, rather than Ca2+ influx through L-type Ca2+ channels, is the target of regulation of a novel signal transduction pathway involving sequential activation of Epac, PLCepsilon, PKCepsilon, and CamKII downstream of betaAR activation.  相似文献   
995.
996.
Efforts to restore tropical forest in abandoned pasture are likely to be more successful when bird visitation is promoted because birds disperse seeds and eat herbivorous arthropods that damage leaves. Thus, it is critical to understand bird behavior in relation to different restoration strategies. We measured the likelihood of visitation, number of visits, and duration of visits for all birds and for Cherrie's Tanager ( Ramphocelus costaricensis ), a common seed disperser, in five sizes of forest restoration patches planted with four tree species in southern Costa Rica. We predicted that the largest patches, and the tree species with the greatest canopy cover, would be visited most frequently and have the longest visits because we assumed that these patch types had the greatest food resources and the lowest predation risk. We found that birds were more likely to visit large patches and the tree species with the highest canopy cover ( Inga edulis ). Birds visited Inga trees more often and stayed in Inga and Erythrina poeppigiana trees for longer periods of time than in other tree species. We found similar results for Cherrie's Tanagers. Thus, we identified two factors, tree species and patch size, which may be manipulated in restoration projects to increase bird visitation.  相似文献   
997.
We aimed to clarify phylogenetic relationships within the pantropical genus Diospyros (Ebenaceae sensu lato), and ascertain biogeographical patterns in the New Caledonian endemic species. We used DNA sequences from eight plastid regions (rbcL, atpB, matK, ndhF, trnK intron, trnL intron, trnL-trnF spacer, and trnS-trnG spacer) and included 149 accessions representing 119 Diospyros species in our analysis. Results from this study confirmed the monophyly of Diospyros with good support and provided a clearer picture of the relationships within the genus than in previous studies. Evidence from phylogenetic analyses suggests that Diospyros colonized New Caledonia multiple times. The four lineages of Diospyros in New Caledonia also differ in their degree of diversification. The molecular data indicate that one lineage is paleoendemic and derived from an ancient Australian species. The other three lineages are more closely related to several Southeast Asian species; two of them are neoendemics, and one has radiated rapidly and recently.  相似文献   
998.
999.
We show that Cibacron Blue F3GA dye resin chromatography can be used to identify ligands that specifically interact with proteins from Mycobacterium tuberculosis, and that the identification of these ligands can facilitate structure determination by enhancing the quality of crystals. Four native Mtb proteins of the aldehyde dehydrogenase (ALDH) family were previously shown to be specifically eluted from a Cibacron Blue F3GA dye resin with nucleosides. In this study we characterized the nucleoside-binding specificity of one of these ALDH isozymes (recombinant Mtb Rv0223c) and compared these biochemical results with co-crystallization experiments with different Rv0223c-nucleoside pairings. We found that the strongly interacting ligands (NAD and NADH) aided formation of high-quality crystals, permitting solution of the first Mtb ALDH (Rv0223c) structure. Other nucleoside ligands (AMP, FAD, adenosine, GTP and NADP) exhibited weaker binding to Rv0223c, and produced co-crystals diffracting to lower resolution. Difference electron density maps based on crystals of Rv0223c with various nucleoside ligands show most share the binding site where the natural ligand NAD binds. From the high degree of similarity of sequence and structure compared to human mitochondrial ALDH-2 (BLAST Z-score = 53.5 and RMSD = 1.5 Å), Rv0223c appears to belong to the ALDH-2 class. An altered oligomerization domain in the Rv0223c structure seems to keep this protein as monomer whereas native human ALDH-2 is a multimer.  相似文献   
1000.
We used a combination of field experiments and stable isotopes to examine mummichog growth and movement within a New England estuary. We documented physical and biological patterns within the estuary by caging individually-marked fish in enclosures at four locations along a coastal river and measuring environmental parameters (e.g., salinity, tidal inundation) and fish characteristics (e.g., gut-contents, growth, and stable isotope values) at each location. The upstream location was fresh (1 ppt) at low tide, and the downstream location was saline at high tide (32 ppt). The upstream and downstream locations had more tidal inundation than the intermediate location. Fish gut contents were dominated by terrestrial insects at the upstream location, by algae and detritus at the intermediate locations, and by aquatic insects at the downstream location. Fish grew fastest at the upstream location and slowest at the downstream location. Stable isotope values (δ13C and δ15N) of fish held in cages were significantly different at upstream, intermediate, and downstream locations. We transferred fish from one location to another in order to document how stable isotope values change when fish switch diets by moving within this estuary. Because differences in rates at which different tissue types approach the isotopic value of new diet sources can be used as a way to estimate the time since diet shift, we used the δ13C and δ15N values of liver and muscle as indicators of short term previous diet (liver) and longer term previous diet (muscle). We collected wild (uncaged) mummichogs from each location, and we compared their liver and muscle isotope values to values of fish that were transferred among locations. When fish were transferred from one location to another, their stable isotope values were intermediate between expected values at the previous and current locations. The liver approached stable isotope values representative of current location faster than muscle. Wild fish showed greater variation in stable isotope values than fish held in cages. Wild fish from the upstream location showed patterns in liver and muscle stable isotope values that were consistent with patterns in fish that were transferred from the downstream location to the upstream location (∼ 10 km away). These patterns in stable isotope values could have multiple causes including intra-season movement between downstream and upstream locations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号