首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5061篇
  免费   510篇
  国内免费   3篇
  5574篇
  2024年   13篇
  2023年   60篇
  2022年   134篇
  2021年   274篇
  2020年   124篇
  2019年   154篇
  2018年   175篇
  2017年   155篇
  2016年   230篇
  2015年   381篇
  2014年   355篇
  2013年   367篇
  2012年   513篇
  2011年   461篇
  2010年   246篇
  2009年   189篇
  2008年   294篇
  2007年   269篇
  2006年   214篇
  2005年   215篇
  2004年   165篇
  2003年   122篇
  2002年   96篇
  2001年   29篇
  2000年   20篇
  1999年   23篇
  1998年   19篇
  1997年   11篇
  1996年   6篇
  1995年   12篇
  1994年   8篇
  1993年   8篇
  1992年   17篇
  1991年   12篇
  1990年   12篇
  1989年   18篇
  1987年   13篇
  1986年   10篇
  1984年   14篇
  1983年   7篇
  1982年   11篇
  1980年   10篇
  1978年   8篇
  1977年   13篇
  1976年   7篇
  1974年   9篇
  1973年   5篇
  1971年   4篇
  1968年   6篇
  1967年   6篇
排序方式: 共有5574条查询结果,搜索用时 0 毫秒
21.
22.
In this paper, I discuss the recent discovery of alleged arsenic bacteria in Mono Lake, California, and the ensuing debate in the scientific community about the validity and significance of these results. By situating this case in the broader context of projects that search for anomalous life forms, I examine the methodology and upshots of challenging biochemical constraints on living things. I distinguish between a narrower and a broader sense in which we might challenge or change our knowledge of life as the result of such a project, and discuss two different kinds of projects that differ in their potential to overhaul our knowledge of life. I argue that the arsenic bacteria case, while potentially illuminating, is the kind of constraint-challenging project that could not—in spite of what was said when it was presented to the public—change our knowledge of life in the deeper sense.  相似文献   
23.
The corpus callosum is the principal cerebral commissure connecting the right and left hemispheres. The development of the corpus callosum is under tight genetic control, as demonstrated by abnormalities in its development in more than 1,000 genetic syndromes. We recruited more than 25 families in which members affected with corpus callosum hypoplasia (CCH) lacked syndromic features and had consanguineous parents, suggesting recessive causes. Exome sequence analysis identified C12orf57 mutations at the initiator methionine codon in four different families. C12orf57 is ubiquitously expressed and encodes a poorly annotated 126 amino acid protein of unknown function. This protein is without significant paralogs but has been tightly conserved across evolution. Our data suggest that this conserved gene is required for development of the human corpus callosum.  相似文献   
24.
Inhibitors based on a benzo-fused spirocyclic oxazepine scaffold were discovered for stearoyl-coenzyme A (CoA) desaturase 1 (SCD1) and subsequently optimized to potent compounds with favorable pharmacokinetic profiles and in vivo efficacy in reducing the desaturation index in a mouse model. Initial optimization revealed potency preferences for the oxazepine core and benzylic positions, while substituents on the piperidine portions were more tolerant and allowed for tuning of potency and PK properties. After preparation and testing of a range of functional groups on the piperidine nitrogen, three classes of analogs were identified with single digit nanomolar potency: glycine amides, heterocycle-linked amides, and thiazoles. Responding to concerns about target localization and potential mechanism-based side effects, an initial effort was also made to improve liver concentration in an available rat PK model. An advanced compound 17m with a 5-carboxy-2-thiazole substructure appended to the spirocyclic piperidine scaffold was developed which satisfied the in vitro and in vivo requirements for more detailed studies.  相似文献   
25.
26.
Generation of reactive oxygen species (ROS) during infection is an immediate host defense leading to microbial killing. APE1 is a multifunctional protein induced by ROS and after induction, protects against ROS-mediated DNA damage. Rac1 and NAPDH oxidase (Nox1) are important contributors of ROS generation following infection and associated with gastrointestinal epithelial injury. The purpose of this study was to determine if APE1 regulates the function of Rac1 and Nox1 during oxidative stress. Gastric or colonic epithelial cells (wild-type or with suppressed APE1) were infected with Helicobacter pylori or Salmonella enterica and assessed for Rac1 and NADPH oxidase-dependent superoxide production. Rac1 and APE1 interactions were measured by co-immunoprecipitation, confocal microscopy and proximity ligation assay (PLA) in cell lines or in biopsy specimens. Significantly greater levels of ROS were produced by APE1-deficient human gastric and colonic cell lines and primary gastric epithelial cells compared to control cells after infection with either gastric or enteric pathogens. H. pylori activated Rac1 and Nox1 in all cell types, but activation was higher in APE1 suppressed cells. APE1 overexpression decreased H. pylori-induced ROS generation, Rac1 activation, and Nox1 expression. We determined that the effects of APE1 were mediated through its N-terminal lysine residues interacting with Rac1, leading to inhibition of Nox1 expression and ROS generation. APE1 is a negative regulator of oxidative stress in the gastrointestinal epithelium during bacterial infection by modulating Rac1 and Nox1. Our results implicate APE1 in novel molecular interactions that regulate early stress responses elicited by microbial infections.  相似文献   
27.
Adoptive cell therapy of tumor-infiltrating lymphocytes has shown promise for treatment of refractory melanoma and other solid malignancies; however, challenges to manufacturing have limited its widespread use. Traditional manufacturing efforts were lengthy, cumbersome and used open culture systems. We describe changes in testing and manufacturing that decreased the process cycle time, enhanced the robustness of critical quality attribute testing and facilitated a functionally closed system. These changes have enabled export of the manufacturing process to support multi-center clinical trials.  相似文献   
28.
29.
30.
The human lung cytochrome P450 2A13 (CYP2A13) activates the nicotine-derived procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) into DNA-altering compounds that cause lung cancer. Another cytochrome P450, CYP2A6, is also present in human lung, but at much lower levels. Although these two enzymes are 93.5% identical, CYP2A13 metabolizes NNK with much lower K(m) values than does CYP2A6. To investigate the structural differences between these two enzymes the structure of CYP2A13 was determined to 2.35A by x-ray crystallography and compared with structures of CYP2A6. As expected, the overall CYP2A13 and CYP2A6 structures are very similar with an average root mean square deviation of 0.5A for the Calpha atoms. Like CYP2A6, the CYP2A13 active site cavity is small and highly hydrophobic with a cluster of Phe residues composing the active site roof. Active site residue Asn(297) is positioned to hydrogen bond with an adventitious ligand, identified as indole. Amino acid differences between CYP2A6 and CYP2A13 at positions 117, 300, 301, and 208 relate to different orientations of the ligand plane in the two protein structures and may underlie the significant variations observed in binding and catalysis of many CYP2A ligands. In addition, docking studies suggest that residues 365 and 366 may also contribute to differences in NNK metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号