首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1458篇
  免费   116篇
  2023年   7篇
  2022年   21篇
  2021年   42篇
  2020年   34篇
  2019年   27篇
  2018年   48篇
  2017年   33篇
  2016年   73篇
  2015年   96篇
  2014年   82篇
  2013年   131篇
  2012年   185篇
  2011年   161篇
  2010年   95篇
  2009年   62篇
  2008年   100篇
  2007年   109篇
  2006年   60篇
  2005年   45篇
  2004年   29篇
  2003年   25篇
  2002年   24篇
  2001年   7篇
  2000年   6篇
  1999年   4篇
  1998年   5篇
  1997年   5篇
  1994年   2篇
  1992年   4篇
  1991年   3篇
  1989年   2篇
  1988年   3篇
  1987年   5篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
  1957年   1篇
  1936年   1篇
  1935年   2篇
  1924年   1篇
排序方式: 共有1574条查询结果,搜索用时 15 毫秒
981.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease affecting the rectum which progressively extents. Its etiology remains unknown and the number of treatments available is limited. Studies of UC patients have identified an unbalanced endoplasmic reticulum (ER) stress in the non-inflamed colonic mucosa. Animal models with impaired ER stress are sensitive to intestinal inflammation, suggesting that an unbalanced ER stress could cause inflammation. However, there are no ER stress-regulating strategies proposed in the management of UC partly because of the lack of relevant preclinical model mimicking the disease. Here we generated the IL10/Nox1dKO mouse model which combines immune dysfunction (IL-10 deficiency) and abnormal epithelium (NADPH oxidase 1 (Nox1) deficiency) and spontaneously develops a UC-like phenotype with similar complications (colorectal cancer) than UC. Our data identified an unanticipated combined role of IL10 and Nox1 in the fine-tuning of ER stress responses in goblet cells. As in humans, the ER stress was unbalanced in mice with decreased eIF2α phosphorylation preceding inflammation. In IL10/Nox1dKO mice, salubrinal preserved eIF2α phosphorylation through inhibition of the regulatory subunit of the protein phosphatase 1 PP1R15A/GADD34 and prevented colitis. Thus, this new experimental model highlighted the central role of epithelial ER stress abnormalities in the development of colitis and defined the defective eIF2α pathway as a key pathophysiological target for UC. Therefore, specific regulators able to restore the defective eIF2α pathway could lead to the molecular remission needed to treat UC.  相似文献   
982.
D222G/N substitutions in A(H1N1)pdm09 hemagglutinin may be associated with increased binding of viruses causing low respiratory tract infections and human pathogenesis. We assessed the impact of such substitutions on the balance between hemagglutinin binding and neuraminidase cleavage, viral growth and in vivo virulence.Seven viruses with differing polymorphisms at codon 222 (2 with D, 3 G, 1 N and 1 E) were isolated from patients and characterized with regards hemagglutinin binding affinity (Kd) to α-2,6 sialic acid (SAα-2,6) and SAα-2,3 and neuraminidase enzymatic properties (Km, Ki and Vmax). The hemagglutination assay was used to quantitatively assess the balance between hemagglutinin binding and neuraminidase cleavage. Viral growth properties were compared in vitro in MDCK-SIAT1 cells and in vivo in BALB/c mice. Compared with D222 variants, the binding affinity of G222 variants was greater for SAα-2,3 and lower for SAα-2,6, whereas that of both E222 and N222 variants was greater for both SAα-2,3 and SAα-2,6. Mean neuraminidase activity of D222 variants (16.0 nmol/h/106) was higher than that of G222 (1.7 nmol/h/106 viruses) and E/N222 variants (4.4 nmol/h/106 viruses). The hemagglutination assay demonstrated a deviation from functional balance by E222 and N222 variants that displayed strong hemagglutinin binding but weak neuraminidase activity. This deviation impaired viral growth in MDCK-SIAT1 cells but not infectivity in mice. All strains but one exhibited low infectious dose in mice (MID50) and replicated to high titers in the lung; this D222 strain exhibited a ten-fold higher MID50 and replicated to low titers. Hemagglutinin-neuraminidase balance status had a greater impact on viral replication than hemagglutinin affinity strength, at least in vitro, thus emphasizing the importance of an optimal balance for influenza virus fitness. The mouse model is effective in assessing binding to SAα-2,3 but cannot differentiate SAα-2,3- from SAα-2,6- preference, nor estimate the hemagglutinin-neuraminidase balance in A(H1N1)pdm09 strains.  相似文献   
983.
Currently, identification of pathogenic bacteria present at very low concentration requires a preliminary culture-based enrichment step. Many research efforts focus on the possibility to shorten this pre-enrichment step which is needed to reach the minimal number of cells that allows efficient identification. Rapid microbiological controls are a real public health issue and are required in food processing, water quality assessment or clinical pathology. Thus, the development of new methods for faster detection and isolation of pathogenic culturable bacteria is necessary. Here we describe a specific enrichment technique for culturable Gram negative bacteria, based on non-lethal click chemistry and the use of magnetic beads that allows fast detection and isolation. The assimilation and incorporation of an analog of Kdo, an essential component of lipopolysaccharides, possessing a bio-orthogonal azido function (Kdo-N3), allow functionalization of almost all Gram negative bacteria at the membrane level. Detection can be realized through strain-promoted azide-cyclooctyne cycloaddition, an example of click chemistry, which interestingly does not affect bacterial growth. Using E. coli as an example of Gram negative bacterium, we demonstrate the excellent specificity of the technique to detect culturable E. coli among bacterial mixtures also containing either dead E. coli, or live B. subtilis (as a model of microorganism not containing Kdo). Finally, in order to specifically isolate and concentrate culturable E. coli cells, we performed separation using magnetic beads in combination with click chemistry. This work highlights the efficiency of our technique to rapidly enrich and concentrate culturable Gram negative bacteria among other microorganisms that do not possess Kdo within their cell envelope.  相似文献   
984.

Background

The classification of rhinitis in adults is missing in epidemiological studies.

Objective

To identify phenotypes of adult rhinitis using an unsupervised approach (data-driven) compared with a classical hypothesis-driven approach.

Methods

983 adults of the French Epidemiological Study on the Genetics and Environment of Asthma (EGEA) were studied. Self-reported symptoms related to rhinitis such as nasal symptoms, hay fever, sinusitis, conjunctivitis, and sensitivities to different triggers (dust, animals, hay/flowers, cold air…) were used. Allergic sensitization was defined by at least one positive skin prick test to 12 aeroallergens. Mixture model was used to cluster participants, independently in those without (Asthma-, n = 582) and with asthma (Asthma+, n = 401).

Results

Three clusters were identified in both groups: 1) Cluster A (55% in Asthma-, and 22% in Asthma+) mainly characterized by the absence of nasal symptoms, 2) Cluster B (23% in Asthma-, 36% in Asthma+) mainly characterized by nasal symptoms all over the year, sinusitis and a low prevalence of positive skin prick tests, and 3) Cluster C (22% in Asthma-, 42% in Asthma+) mainly characterized by a peak of nasal symptoms during spring, a high prevalence of positive skin prick tests and a high report of hay fever, allergic rhinitis and conjunctivitis. The highest rate of polysensitization (80%) was found in participants with comorbid asthma and allergic rhinitis.

Conclusion

This cluster analysis highlighted three clusters of rhinitis with similar characteristics than those known by clinicians but differing according to allergic sensitization, and this whatever the asthma status. These clusters could be easily rebuilt using a small number of variables.  相似文献   
985.
986.
Recent findings indicate that microglia in Alzheimer’s disease (AD) is senescent whereas peripheral blood mononuclear cells (PBMCs) could infiltrate the brain to phagocyte amyloid deposits. However, the molecular mechanisms involved in the amyloid peptide clearance remain unknown. Autophagy is a physiological degradation of proteins and organelles and can be controlled by pro-inflammatory cytokines. The purpose of this study was to evaluate the impact of inflammation on autophagy in PBMCs from AD patients at baseline, 12 and 24 months of follow-up. Furthermore, PBMCs from healthy patients were also included and treated with 20 μM amyloid peptide 1–42 to mimic AD environment. For each patient, PBMCs were stimulated with the mitogenic factor, phytohaemagglutin (PHA), and treated with either 1 μM C16 as an anti-inflammatory drug or its vehicle. Autophagic markers (Beclin-1, p62/sequestosome 1 and microtubule-associated protein-light chain 3: LC3) were quantified by western blot and cytokines (Interleukin (IL)-1β, Tumor necrosis Factor (TNF)-α and IL-6) by Luminex X-MAP® technology. Beclin-1 and TNF-α levels were inversely correlated in AD PBMCs at 12 months post-inclusion. In addition, Beclin-1 and p62 increased in the low inflammatory environment induced by C16. Only LC3-I levels were inversely correlated with cognitive decline at baseline. For the first time, this study describes longitudinal changes in autophagic markers in PBMCs of AD patients under an inflammatory environment. Inflammation would induce autophagy in the PBMCs of AD patients while an anti-inflammatory environment could inhibit their autophagic response. However, this positive response could be altered in a highly aggressive environment.  相似文献   
987.
988.
The mid-Cretaceous vertebrate assemblage from south-eastern Morocco is one of the most diversified continental vertebrate assemblages of this time worldwide. The bony fish component (coelacanths, lungfishes and ray-finned fishes) is represented by relatively complete specimens and, mostly, by fragmentary elements scattered along 250 kilometres of outcrops. Here we revisit the bony fish assemblage by studying both isolated remains collected during several fieldtrips and more complete material kept in public collections. The assemblage comprises several lungfish taxa, with the first mention of the occurrence of Arganodus tiguidiensis, and possibly two mawsoniid coelacanths. A large bichir cf. Bawitius, is recorded and corresponds to cranial elements initially referred to ‘Stromerichthys’ from coeval deposits in Egypt. The ginglymodians were diversified with a large ‘Lepidotes’ plus two obaichthyids and a gar. We confirm here that this gar belongs to a genus distinctive from Recent gars, contrary to what was suggested recently. Teleosteans comprise a poorly known ichthyodectiform, a notopterid, a probable osteoglossomorph and a large tselfatiiform, whose cranial anatomy is detailed. The body size and trophic level for each taxon are estimated on the basis of comparison with extant closely related taxa. We plotted the average body size versus average trophic level for the Kem Kem assemblage, together with extant marine and freshwater assemblages. The Kem Kem assemblage is characterized by taxa of proportionally large body size, and by a higher average trophic level than the trophic level of the extant compared freshwater ecosystems, but lower than for the extant marine ecosystems. These results should be regarded with caution because they rest on a reconstructed assemblage known mostly by fragmentary remains. They reinforce, however, the ecological oddities already noticed for this mid-Cretaceous vertebrate ecosystem in North Africa.  相似文献   
989.
990.
Ligands for natural killer (NK) cell activating receptors can be released from tumor cells and are believed to promote tumor growth by acting as decoys for effector lymphocytes. In a recent paper published in Science, Deng et al. report another scenario in which a shed form of the MULT1 mouse NKG2D ligand boosts NK cell functions.Natural killer (NK) cells are cytolytic and cytokine-producing lymphocytes of the innate immune system that participate in the control of tumor growth and microbial infections1. NK cell effector activities are tightly controlled by a fine balance of inhibitory and activating signals delivered by surface receptors. Activating receptors can recognize two types of ligands, self-molecules encoded by the host''s own genome whose expression is upregulated upon cellular stress, or exogenous molecules produced by microbes during infection. NKG2D, one of the best characterized activating receptor expressed by NK and T cells, binds to several different ligands in human and mouse2. NKG2D ligands are poorly expressed on the vast majority of normal cell surfaces, but are upregulated on tumor and virus-infected cells. In addition, NKG2D ligands can be released by both surface cleavage and exosome excretion. It has been reported that shed ligands can block tumor cell recognition by effector cells by preventing NKG2D interaction with its ligands3. However, several reports do not correlate the presence of soluble ligands with decreased NKG2D expression nor functional activities.Deng et al.4 focused their analysis on the NKG2D mouse ligand MULT1, which is commonly overexpressed on primary tumor cells. They first showed that MULT1-transduced fibroblast can cleave MULT1 from the plasma membrane, resulting in a released shed form in the supernatant. Shed MULT1 is of high affinity to NKG2D (∼13 nM) similar to recombinant MULT1. They further reveal the presence of shed MULT1 in the serum of mice developing spontaneous MULT1+ tumors. Interestingly, the authors detected a very high concentration of shed MULT1 in the sera of Apoe−/− mice exhibiting severe atherosclerosis and liver inflammation. Given that these autoimmune injuries observed in this mouse model depend on NKG2D activity5, it was unlikely that shed MULT1 exert an inhibitory effect on immunity.Surprisingly, the authors further showed that mouse tumor cells engineered to release a secreted form of MULT1 (secMULT1) similar to the shed MULT1 were rejected when injected into syngenic mice. Tumor rejection is dependent on NK cells as cells grow in NK but not in CD8+ T cell-depleted host and requires NKG2D. Importantly, the controlled release of secMULT1 from tumors harboring inducible secMULT1 promotes tumor rejection. To rule out the possibility that tumor cell rejection was due to intrinsic modifications of tumor cells, the author monitored the rejection of a mixture of 9:1 secMULT1: secMULT1+ tumor cells and showed an improved antitumoral effect on both secMULT1+ and, importantly, secMULT1 tumors. In addition, direct intratumoral injection of recombinant MULT1 promotes tumor rejection. These results suggested that soluble MULT1 mobilizes or activates anti-tumor effector cells. Deng et al. further reported increased frequencies of cytotoxic and IFN-γ-secreting NK cells associated with secMULT1+ tumors as compared to control tumor cells. Altogether, these data suggest that a shed NKG2D ligand can promote tumor rejection by boosting NK cell effector functions.Shed MULT1 could crosslink NKG2D and thus activate NK cells. However, shed and secMULT1 are monomeric molecules similar to the recombinant MULT1 which fails to activate NK cells in vitro. Formation of multivalent structures in vivo was not detected. In addition, whereas the transmembrane form of MULT1 can activate NK cells by crosslinking NKG2D and induces NKG2D downregulation, soluble MULT1 upregulates NKG2D on the NK cell surface. This upregulation is probably due do a decreased downregulation of NKG2D surface expression because no increase in NKG2D mRNA or protein was observed. Based on these findings, the authors hypothesized that NKG2D ligands expressed on non-tumor host cell membrane continuously engage NKG2D on NK cells, leading to NKG2D downregulation and NK cell desensitization, whereas soluble MULT1 blocks these interactions to increase NK cell responsiveness (Figure 1). Along this line, NK cells from mutant mice genetically deficient for the NKG2D ligand expressed by tumor-associated myeloid cells are not desensitized.Open in a separate windowFigure 1Tumor-associated cells express NKG2DL which can desensitize NK cells. Tumor shedding of MULT1 delivers soluble MULT1 that outcompetes for NKG2D binding and prevents NK cell desensitization. Boosted NK cell functions lead to improved tumor cell rejection by other activating receptors.The induction of cell desensitization by a frequent or even constant stimulation is a very common mechanism across living objects. Regarding NK cells, another example of tuning via desensitization resides in the impact of the long lasting absence of MHC class I molecules in their environment. Indeed, NK cells are hyporesponsive in a MHC-I-deficient host6. There are accumulating data indicating that in the absence of engagement of inhibitory receptors for MHC class I molecules, NK cells get desensitized due to their chronic interaction with endogenous stimulating ligands7. Indeed, in the absence of engagement of this inhibitory pathway, NK cell activation would be unleashed8. This scenario is supported by a series of in vitro and in vivo experiments in which NK cells are desensitized following chronic exposure to stimulatory molecules expressed at the surface of interacting cells9,10. Thus, the induction of MHC class I downregulation or NKG2D ligand upregulation boosts NK cell function, whereas the sustained lack of MHC class I or expression of NKG2D ligands impairs NK cell reactivity. This tuning of immune response as a function of the speed of change of the stimuli detected by lymphocytes is at the center of the recently proposed Discontinuity Theory11.Finally, consistent with their findings with secMULT1 but somewhat counter-intuitively, Deng et al. also show that NKG2D receptor deficiency or blockade using anti-NKG2D monoclonal antibodies mimics the effect of soluble MULT1. Indeed, in both conditions, NK cell effector functions are boosted, resulting in improved tumor rejection. Similarly, blocking other NK activating receptors, such as NKp46, may also lead to NK cell desensitization12. Checkpoint inhibitory receptors are revolutionizing the treatment of cancers by inhibiting the inhibitory receptors. The findings reported by Deng et al. together with earlier results propose alternative strategies of cancer treatment using antibodies that are directed against activating receptors. In the case of NKG2D, the chronic engagement of NK cells with membrane-bound NKG2D ligand affects not only NKG2D-dependent but also NKG2D-independent signaling pathways9. The blockade of NKG2D desensitization by antibodies directed against NKG2D should thus also boost NK cell activation via other pathways, such as antibody-dependent cell cytotoxicity. However, the precise identification of the ligand-receptor pair involved in the control of tumors by NK cells will be a limiting factor to these innovative therapeutic approaches. Indeed, antibodies against activating receptors should be designed to boost NK cell reactivity but should not block the recognition of the tumors by NK cells. Finally, as the tuning of NK cell reactivity by soluble NKG2D ligands depends on their affinity for NKG2D, the pre-clinical development of this new class of drug candidates might reveal novel pharmacokinetics and the pharmacodynamics guidelines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号