首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1406篇
  免费   115篇
  1521篇
  2024年   2篇
  2023年   8篇
  2022年   25篇
  2021年   40篇
  2020年   34篇
  2019年   27篇
  2018年   48篇
  2017年   33篇
  2016年   72篇
  2015年   94篇
  2014年   83篇
  2013年   128篇
  2012年   179篇
  2011年   153篇
  2010年   90篇
  2009年   61篇
  2008年   99篇
  2007年   108篇
  2006年   59篇
  2005年   40篇
  2004年   27篇
  2003年   22篇
  2002年   20篇
  2001年   4篇
  2000年   6篇
  1999年   3篇
  1998年   5篇
  1997年   5篇
  1994年   2篇
  1992年   4篇
  1991年   3篇
  1988年   2篇
  1987年   3篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
  1957年   1篇
  1935年   2篇
  1924年   1篇
排序方式: 共有1521条查询结果,搜索用时 15 毫秒
101.
Endostatin is an endogenous inhibitor of angiogenesis. Although several endothelial cell surface molecules have been reported to interact with endostatin, its molecular mechanism of action is not fully elucidated. We used surface plasmon resonance assays to characterize interactions between endostatin, integrins, and heparin/heparan sulfate. α5β1 and αvβ3 integrins form stable complexes with immobilized endostatin (KD = ∼1.8 × 10−8 m, two-state model). Two arginine residues (Arg27 and Arg139) are crucial for the binding of endostatin to integrins and to heparin/heparan sulfate, suggesting that endostatin would not bind simultaneously to integrins and to heparan sulfate. Experimental data and molecular modeling support endostatin binding to the headpiece of the αvβ3 integrin at the interface between the β-propeller domain of the αv subunit and the βA domain of the β3 subunit. In addition, we report that α5β1 and αvβ3 integrins bind to heparin/heparan sulfate. The ectodomain of the α5β1 integrin binds to haparin with high affinity (KD = 15.5 nm). The direct binding between integrins and heparin/heparan sulfate might explain why both heparan sulfate and α5β1 integrin are required for the localization of endostatin in endothelial cell lipid rafts.Endostatin is an endogenous inhibitor of angiogenesis that inhibits proliferation and migration of endothelial cells (13). This C-fragment of collagen XVIII has also been shown to inhibit 65 different tumor types and appears to down-regulate pathological angiogenesis without side effects (2). Endostatin regulates angiogenesis by complex mechanisms. It modulates embryonic vascular development by enhancing proliferation, migration, and apoptosis (4). It also has a biphasic effect on the inhibition of endothelial cell migration in vitro, and endostatin therapy reveals a U-shaped curve for antitumor activity (5, 6). Short term exposure of endothelial cells to endostatin may be proangiogenic, unlike long term exposure, which is anti-angiogenic (7). The effect of endostatin depends on its concentration and on the type of endothelial cells (8). It exerts the opposite effects on human umbilical vein endothelial cells and on endothelial cells derived from differentiated embryonic stem cells. Furthermore, two different mechanisms (heparin-dependent and heparin-independent) may exist for the anti-proliferative activity of endostatin depending on the growth factor used to induce cell proliferation (fibroblast growth factor 2 or vascular endothelial growth factor). Its anti-proliferative effect on endothelial cells stimulated by fibroblast growth factor 2 is mediated by the binding of endostatin to heparan sulfate (9), whereas endostatin inhibits vascular endothelial growth factor-induced angiogenesis independently of its ability to bind heparin and heparan sulfate (9, 10). The broad range of molecular targets of endostatin suggests that multiple signaling systems are involved in mediating its anti-angiogenic action (11), and although several endothelial cell surface molecules have been reported to interact with endostatin, its molecular mechanisms of action are not as fully elucidated as they are for other endogenous angiogenesis inhibitors (11).Endostatin binds with relatively low affinity to several membrane proteins including α5β1 and αvβ3 integrins (12), heparan sulfate proteoglycans (glypican-1 and -4) (13), and KDR/Flk1/vascular endothelial growth factor receptor 2 (14), but no high affinity receptor(s) has been identified so far. The identification of molecular interactions established by endostatin at the cell surface is a first step toward the understanding of the mechanisms by which endostatin regulates angiogenesis. We have previously characterized the binding of endostatin to heparan sulfate chains (9). In the present study we have focused on characterizing the interactions between endostatin, α5β1, αvβ3, and αvβ5 integrins and heparan sulfate. Although interactions between several integrins and endostatin have been studied previously in solid phase assays (12) and in cell models (12, 15, 16), no molecular data are available on the binding site of endostatin to the integrins. We found that two arginine residues of endostatin (Arg27 and Arg139) participate in binding to integrins and to heparan sulfate, suggesting that endostatin is not able to bind simultaneously to these molecules displayed at the cell surface. Furthermore, we have demonstrated that α5β1, αvβ3, and αvβ5 integrins bind to heparan sulfate. This may explain why both heparan sulfate and α5β1 integrins are required for the localization of endostatin in lipid rafts, in support of the model proposed by Wickström et al. (15).  相似文献   
102.
Functions of nuclear polymeric proteins such as lamin A/C and actin in transport of plasmid DNA were studied. The results show that the lamina plays an important role in plasmid DNA's entry into the cell nucleus from the cytoplasm. Selective disruption of lamin A/C led to a halt in plasmid DNA transport through the nuclear envelope. Inside the nucleus, plasmid DNA was frequently localized at sites with impaired genome integrity, such as DNA double-strand breaks (DSBs), occurring spontaneously or induced by ionizing radiation. Polymeric actin obviously participates in nuclear transport of plasmid DNA, since inhibition of actin polymerization by latrunculin B disturbed plasmid transport inside the cell nucleus. In addition, precluding of actin polymerization inhibited plasmid co-localization with newly induced DSBs. These findings indicate the crucial role of polymeric actin in intranuclear plasmid transport.  相似文献   
103.
The regulatory NEMO (NF-κB essential modulator) protein has a crucial role in the canonical NF-κB signaling pathway notably involved in immune and inflammatory responses, apoptosis and oncogenesis. The regulatory domain is located in the C-terminal half of NEMO and contains a classical CCHC-type zinc finger (ZF). We have investigated the structural and functional effects of a cysteine to phenylalanine point mutation (C417F) in the ZF motif, identified in patients with anhidrotic ectodermal dysplasia with immunodeficiency. The solution structures of the wild type and mutant ZF were determined by NMR. Remarkably, the mutant adopts a global ββα fold similar to that of the wild type and retains thermodynamic stability, i.e., the ability to bind zinc with a native-like affinity, although the last zinc-chelating residue is missing. However, the mutation induces enhanced dynamics in the motif and leads to an important loss of stability. A detailed analysis of the wild type solution structure and experimental evidences led to the identification of two possible protein-binding surfaces that are largely destabilized in the mutant. This is sufficient to alter NEMO function, since functional complementation assays using NEMO-deficient pre-B and T lymphocytes show that full-length C417F pathogenic NEMO leads to a partial to strong defect in LPS, IL-1β and TNF-α-induced NF-κB activation, respectively, as compared to wild type NEMO. Altogether, these results shed light onto the role of NEMO ZF as a protein-binding motif and show that a precise structural integrity of the ZF should be preserved to lead to a functional protein-recognition motif triggering full NF-κB activation.  相似文献   
104.
A gene involved in N-acyl homoserine lactone (N-AHSL) degradation was identified by screening a genomic library of Rhodococcus erythropolis strain W2. This gene, named qsdA (for quorum-sensing signal degradation), encodes an N-AHSL lactonase unrelated to the two previously characterized N-AHSL-degrading enzymes, i.e., the lactonase AiiA and the amidohydrolase AiiD. QsdA is related to phosphotriesterases and constitutes the reference of a novel class of N-AHSL degradation enzymes. It confers the ability to inactivate N-AHSLs with an acyl chain ranging from C(6) to C(14), with or without substitution at carbon 3. Screening of a collection of 15 Rhodococcus strains and strains closely related to this genus clearly highlighted the relationship between the ability to degrade N-AHSLs and the presence of the qsdA gene in Rhodococcus. Bacteria harboring the qsdA gene interfere very efficiently with quorum-sensing-regulated functions, demonstrating that qsdA is a valuable tool for developing quorum-quenching procedures.  相似文献   
105.
106.
107.
Retinoids and interferons are signaling molecules with pronounced anticancer activity. We show that in both acute promyelocytic leukemia and breast cancer cells the retinoic acid (RA) and interferon signaling pathways converge on the promoter of the tumoricidal death ligand TRAIL. Promoter mapping, chromatin immunoprecipitation and RNA interference reveal that retinoid-induced interferon regulatory factor-1 (IRF-1), a tumor suppressor, is critically required for TRAIL induction by both RA and IFNgamma. Exposure of breast cancer cells to both antitumor agents results in enhanced TRAIL promoter occupancy by IRF-1 and coactivator recruitment, leading to strong histone acetylation and synergistic induction of TRAIL expression. In coculture experiments, pre-exposure of breast cancer cells to RA and IFNgamma induced a dramatic TRAIL-dependent apoptosis in heterologous cancer cells in a paracrine mode of action, while normal cells were not affected. Our results identify a novel TRAIL-mediated tumor suppressor activity of IRF-1 and suggest a mechanistic basis for the synergistic antitumor activities of certain retinoids and interferons. These data argue for combination therapies that activate the TRAIL pathway to eradicate tumor cells.  相似文献   
108.
Is hEXO1 a cancer predisposing gene?   总被引:2,自引:0,他引:2  
  相似文献   
109.
Aminotransferases, which catalyze the last step of biosynthesis of most amino acids and the first step of their catabolism, may be involved in the growth of Lactococcus lactis in milk. Previously, we isolated two aminotransferases from L. lactis, AraT and BcaT, which are responsible for the transamination of aromatic amino acids, branched-chain amino acids, and methionine. In this study, we demonstrated that double inactivation of AraT and BcaT strongly reduced the growth of L. lactis in milk. Supplementation of milk with amino acids and keto acids that are substrates of both aminotransferases did not improve the growth of the double mutant. On the contrary, supplementation of milk with isoleucine or a dipeptide containing isoleucine almost totally inhibited the growth of the double mutant, while it did not affect or only slightly affected the growth of the wild-type strain. These results suggest that AraT and BcaT play a major role in the growth of L. lactis in milk by degrading the intracellular excess isoleucine, which is responsible for the growth inhibition. The growth inhibition by isoleucine is likely to be due to CodY repression of the proteolytic system, which is necessary for maximal growth of L. lactis in milk, since the growth of the CodY mutant was not affected by addition of isoleucine to milk. Moreover, we demonstrated that AraT and BcaT are part of the CodY regulon and therefore are regulated by nutritional factors, such as the carbohydrate and nitrogen sources.  相似文献   
110.
Sponges [porifera], the most ancient metazoans, contain modules related to the vertebrate immune system, including the 2′,5′-oligoadenylate synthetase (OAS). The components of the antiviral 2′,5′-oligoadenylate (2–5A) system (OAS, 2′-Phosphodiesterase (2′-PDE) and RNAse L) of vertebrates have not all been identified in sponges. Here, we demonstrate for the first time that in addition to the OAS activity, sponges possess a 2′-PDE activity, which highlights the probable existence of a premature 2–5A system. Indeed, Suberites domuncula and Crella elegans exhibited this 2–5A degrading activity. Upon this finding, two out of three elements forming the 2–5A system have been found in sponges, only a endoribonuclease, RNAse L or similar, has to be found. We suspect the existence of a complex immune system in sponges, besides the self/non-self recognition system and the use of phagocytosis and secondary metabolites against pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号