全文获取类型
收费全文 | 1414篇 |
免费 | 117篇 |
专业分类
1531篇 |
出版年
2024年 | 2篇 |
2023年 | 8篇 |
2022年 | 25篇 |
2021年 | 40篇 |
2020年 | 34篇 |
2019年 | 27篇 |
2018年 | 48篇 |
2017年 | 33篇 |
2016年 | 72篇 |
2015年 | 95篇 |
2014年 | 85篇 |
2013年 | 128篇 |
2012年 | 181篇 |
2011年 | 154篇 |
2010年 | 91篇 |
2009年 | 61篇 |
2008年 | 99篇 |
2007年 | 108篇 |
2006年 | 61篇 |
2005年 | 40篇 |
2004年 | 27篇 |
2003年 | 22篇 |
2002年 | 20篇 |
2001年 | 4篇 |
2000年 | 6篇 |
1999年 | 3篇 |
1998年 | 5篇 |
1997年 | 5篇 |
1994年 | 2篇 |
1992年 | 4篇 |
1991年 | 3篇 |
1988年 | 2篇 |
1987年 | 3篇 |
1985年 | 4篇 |
1984年 | 3篇 |
1983年 | 4篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1970年 | 1篇 |
1969年 | 1篇 |
1968年 | 1篇 |
1966年 | 1篇 |
1965年 | 1篇 |
1957年 | 1篇 |
1935年 | 2篇 |
1924年 | 1篇 |
排序方式: 共有1531条查询结果,搜索用时 0 毫秒
111.
Claudine Dherin Emeric Gueneau Mathilde Francin Marcela Nunez Simona Miron Sascha Emilie Liberti Lene Juel Rasmussen Sophie Zinn-Justin Bernard Gilquin Jean-Baptiste Charbonnier Serge Boiteux 《Molecular and cellular biology》2009,29(3):907-918
Mlh1 is an essential factor of mismatch repair (MMR) and meiotic recombination. It interacts through its C-terminal region with MutL homologs and proteins involved in DNA repair and replication. In this study, we identified the site of yeast Mlh1 critical for the interaction with Exo1, Ntg2, and Sgs1 proteins, designated as site S2 by reference to the Mlh1/Pms1 heterodimerization site S1. We show that site S2 is also involved in the interaction between human MLH1 and EXO1 or BLM. Binding at this site involves a common motif on Mlh1 partners that we called the MIP-box for the Mlh1 interacting protein box. Direct and specific interactions between yeast Mlh1 and peptides derived from Exo1, Ntg2, and Sgs1 and between human MLH1 and peptide derived from EXO1 and BLM were measured with Kd values ranging from 8.1 to 17.4 μM. In Saccharomyces cerevisiae, a mutant of Mlh1 targeted at site S2 (Mlh1-E682A) behaves as a hypomorphic form of Exo1. The site S2 in Mlh1 mediates Exo1 recruitment in order to optimize MMR-dependent mutation avoidance. Given the conservation of Mlh1 and Exo1 interaction, it may readily impact Mlh1-dependent functions such as cancer prevention in higher eukaryotes. 相似文献
112.
Ribeiro AF Laroche E Hanin G Fournier M Quillet L Dupont JP Pawlak B 《FEMS microbiology ecology》2012,81(1):267-280
Occurrences of antibiotic-resistant Escherichia coli in two springs of a karstic system (NW France) providing drinking water were determined to study the role of aquifers in the dissemination of the resistance genes. Water samples were collected during wet and dry periods and after a heavy rainfall event to investigate E. coli density, antibiotic resistance patterns, and occurrences of class 1, 2, and 3 integrons. By observing patterns of the resistant isolates (i.e. number and type of resistances) and their occurrences, we were able to define two resistant subpopulations, introduced in the aquifer via surface water: (1) R1-2, characterized by one or two resistance(s), essentially to chloramphenicol and/or tetracycline (96.5%), was always found during the heavy rainfall event; (2) R3-10, characterized by three or more resistances, mostly resistant to tetracycline (94.1%) and beta-lactams (86%), was found transiently. Class 1 and 2 integrons were detected, mostly in the R3-10 subpopulation for class 1 integrons. The characteristics of these two subpopulations strongly suggest that the contamination originates from pasture runoff for the R1-2 subpopulation and from wastewater treatment plant effluents for the R3-10 subpopulation. These two subpopulations of E. coli could be used as biological indicators to determine the origin of groundwater contamination. 相似文献
113.
Bosviel R Garcia S Lavediaux G Michard E Dravers M Kwiatkowski F Bignon YJ Bernard-Gallon DJ 《Cancer epidemiology》2012,36(3):e177-e182
Objective Epigenetics, particularly DNA methylation, has recently been shown to be important in breast cancer initiation. We investigated the clinical and prognostic importance of whole blood breast cancer early onset gene 1 (BRCA1) DNA methylation in sporadic breast cancer. Methods Genomic DNA was extracted from the peripheral blood cells (PBCs) of 902 breast cancer patients at diagnosis, with no BRCA1 mutation, and 990 control women. DNA methylation was measured by quantitative analysis of methylated alleles (QAMA) to estimate the extent of methylation of 2 CpG sites in the promoter region of BRCA1 oncosuppressor. Results BRCA1 promoter methylation rate in PBCs was 47.1% with a 95% confidence interval [46.1; 48.1] in breast cancer patients, and 45.9% with a 95% confidence interval [45.0; 46.8] in controls. We found a trend toward BRCA1 promoter hypermethylation in PBCs of sporadic breast cancer patients compared with controls. Association between methylation and clinicopathological features was evaluated using statistical tests. BRCA1 promoter methylation in PBCs increased significantly in breast cancer patients compared with controls, for age over 70 years (p = 0.022), in post-menopausal status (p = 0.013), for a body mass index (BMI) <20 (p = 0.0095) or a waist-to-hip ratio (WHR) ≤76.8 (p = 0.0027). We also found an association of increased BRCA1 promoter methylation in PBCs with ACA/ACA genotype for the SNP Thr594Thr in ESR (estrogen receptor gene), known to be associated with breast cancer risk (p = 0.092), reflecting the reduced presence of this genotype in this breast cancer case-control study. Conclusion Analysis of site-specific DNA methylation in PBCs by QAMA provides quantitative DNA methylation values that may serve as important prognostic indicators. 相似文献
114.
Christo Schiphorst Luuk Achterberg Rodrigo Gmez Rob Koehorst Roberto Bassi Herbert van Amerongen Luca DallOsto Emilie Wientjes 《Plant physiology》2022,188(4):2241
Photosynthesis powers nearly all life on Earth. Light absorbed by photosystems drives the conversion of water and carbon dioxide into sugars. In plants, photosystem I (PSI) and photosystem II (PSII) work in series to drive the electron transport from water to NADP+. As both photosystems largely work in series, a balanced excitation pressure is required for optimal photosynthetic performance. Both photosystems are composed of a core and light-harvesting complexes (LHCI) for PSI and LHCII for PSII. When the light conditions favor the excitation of one photosystem over the other, a mobile pool of trimeric LHCII moves between both photosystems thus tuning their antenna cross-section in a process called state transitions. When PSII is overexcited multiple LHCIIs can associate with PSI. A trimeric LHCII binds to PSI at the PsaH/L/O site to form a well-characterized PSI–LHCI–LHCII supercomplex. The binding site(s) of the “additional” LHCII is still unclear, although a mediating role for LHCI has been proposed. In this work, we measured the PSI antenna size and trapping kinetics of photosynthetic membranes from Arabidopsis (Arabidopsis thaliana) plants. Membranes from wild-type (WT) plants were compared to those of the ΔLhca mutant that completely lacks the LHCI antenna. The results showed that “additional” LHCII complexes can transfer energy directly to the PSI core in the absence of LHCI. However, the transfer is about two times faster and therefore more efficient, when LHCI is present. This suggests LHCI mediates excitation energy transfer from loosely bound LHCII to PSI in WT plants.The light-harvesting antennae of photosystem I facilitate energy transfer from trimeric light-harvesting complex II to photosystem I in the stroma lamellae membrane. 相似文献
115.
Kerner R Delgado-Eckert E Del Castillo E Müller-Starck G Peter M Kuster B Tisserant E Pritsch K 《Journal of Proteomics》2012,75(12):3707-3719
Cenococcum geophilum is a widely distributed ectomycorrhizal fungus potentially playing a significant role in resistance and resilience mechanisms of its tree hosts exposed to drought stress. In this study, we performed a large scale protein analysis in pure cultures of C. geophilum in order to gain first global insights into the proteome assembly of this fungus. Using 1-D gel electrophoresis coupled with ESI-MS/MS, we indentified 638 unique proteins. Most of these proteins were related to the metabolic and cellular processes, and the transport machinery of cells. In a second step, we examined the influence of water deprivation on the proteome of C. geophilum pure cultures at three time points of gradually imposed drought. The results indicated that 12 proteins were differentially abundant in mycelia subjected to drought compared to controls. The induced responses in C. geophilum point towards regulation of osmotic stress, maintainance of cell integrity, and counteracting increased levels of reactive oxygen species formed during water deprivation. 相似文献
116.
Emilie Leroy Jean-Philippe Defour Takeshi Sato Sharmila Dass Vitalina Gryshkova Myat M. Shwe Judith Staerk Stefan N. Constantinescu Steven O. Smith 《The Journal of biological chemistry》2016,291(6):2974-2987
Ligand binding to the extracellular domain of the thrombopoietin receptor (TpoR) imparts a specific orientation on the transmembrane (TM) and intracellular domains of the receptors that is required for physiologic activation via receptor dimerization. To map the inactive and active dimeric orientations of the TM helices, we performed asparagine (Asn)-scanning mutagenesis of the TM domains of the murine and human TpoR. Substitution of Asn at only one position (S505N) activated the human receptor, whereas Asn substitutions at several positions activated the murine receptor. Second site mutational studies indicate that His499 near the N terminus of the TM domain is responsible for protecting the human receptor from activation by Asn mutations. Structural studies reveal that the sequence preceding His499 is helical in the murine receptor but non-helical in peptides corresponding to the TM domain of the inactive human receptor. The activating S505N mutation and the small molecule agonist eltrombopag both induce helix in this region of the TM domain and are associated with dimerization and activation of the human receptor. Thus, His499 regulates the activation of human TpoR and provides additional protection against activating mutations, such as oncogenic Asn mutations in the TM domain. 相似文献
117.
Previous studies indicated that empty time intervals are better discriminated in the auditory than in the visual modality, and when delimited by signals delivered from the same (intramodal intervals) rather than from different sensory modalities (intermodal intervals). The present electrophysiological study was conducted to determine the mechanisms which modulated the performances in inter- and intramodal conditions. Participants were asked to categorise as short or long empty intervals marked by auditory (A) and/or visual (V) signals (intramodal intervals: AA, VV; intermodal intervals: AV, VA). Behavioural data revealed that the performances were higher for the AA intervals than for the three other intervals and lower for inter- compared to intramodal intervals. Electrophysiological results indicated that the CNV amplitude recorded at fronto-central electrodes increased significantly until the end of the presentation of the long intervals in the AA conditions, while no significant change in the time course of this component was observed for the other three modalities of presentation. They also indicated that the N1 and P2 amplitudes recorded after the presentation of the signals which delimited the beginning of the intervals were higher for the inter- (AV/VA) compared to the intramodal intervals (AA/VV). The time course of the CNV revealed that the high performances observed with AA intervals would be related to the effectiveness of the neural mechanisms underlying the processing of the ongoing interval. The greater amplitude of the N1 and P2 components during the intermodal intervals suggests that the weak performances observed in these conditions would be caused by an attentional bias induced by the cognitive load and the necessity to switch between modalities. 相似文献
118.
119.
Carine Brouat Caroline Tatard Khalilou Bâ Jean‐François Cosson Gauthier Dobigny Elisabeth Fichet‐Calvet Laurent Granjon Emilie Lecompte Anne Loiseau Karine Mouline Sylvain Piry Jean‐Marc Duplantier 《Journal of Biogeography》2009,36(12):2237-2250
Aim To investigate the phylogeographical structure of the Guinea multimammate mouse, Mastomys erythroleucus (Temminck, 1853), a widespread murid rodent in sub‐Saharan (Sahel and Sudan) savannas, for a better understanding of the impacts of geographical and historical factors on the evolutionary history of this species, in the context of the growing database of phylogeographical studies of African savanna mammal species. Location Sahel and Sudan savannas, Africa. Methods We sequenced the whole cytochrome b gene in 211 individuals from 59 localities distributed from Senegal to Ethiopia. Sequence data were analysed using both phylogenetic (several rooted tree‐construction methods, median‐joining networks) and population genetic methods (spatial analyses of molecular variance, mismatch distributions). Results Haplotypes were distributed into four major monophyletic groups corresponding to distinct geographical regions across a west–east axis. Diversification events were estimated to have occurred between 1.16 and 0.18 Ma. Main conclusions Vicariance events related to the fragmentation of savanna habitats during the Pleistocene era may explain the phylogeographical patterns observed. Genetic structure was consistent with a role of major Sahelian rivers as significant barriers to west–east dispersal. Recent demographic expansions probably occurred during arid phases of the Holocene with the southward expansion of savannas. 相似文献
120.
Anne M. Estes David J. Hearn Emilie C. Snell-Rood Michele Feindler Karla Feeser Tselotie Abebe Julie C. Dunning Hotopp Armin P. Moczek 《PloS one》2013,8(11)
Insects feeding on plant sap, blood, and other nutritionally incomplete diets are typically associated with mutualistic bacteria that supplement missing nutrients. Herbivorous mammal dung contains more than 86% cellulose and lacks amino acids essential for insect development and reproduction. Yet one of the most ecologically necessary and evolutionarily successful groups of beetles, the dung beetles (Scarabaeinae) feeds primarily, or exclusively, on dung. These associations suggest that dung beetles may benefit from mutualistic bacteria that provide nutrients missing from dung. The nesting behaviors of the female parent and the feeding behaviors of the larvae suggest that a microbiome could be vertically transmitted from the parental female to her offspring through the brood ball. Using sterile rearing and a combination of molecular and culture-based techniques, we examine transmission of the microbiome in the bull-headed dung beetle, Onthophagus taurus. Beetles were reared on autoclaved dung and the microbiome was characterized across development. A ~1425 bp region of the 16S rRNA identified Pseudomonadaceae, Enterobacteriaceae, and Comamonadaceae as the most common bacterial families across all life stages and populations, including cultured isolates from the 3rd instar digestive system. Finer level phylotyping analyses based on lepA and gyrB amplicons of cultured isolates placed the isolates closest to Enterobacter cloacae, Providencia stuartii, Pusillimonas sp., Pedobacter heparinus, and Lysinibacillus sphaericus. Scanning electron micrographs of brood balls constructed from sterile dung reveals secretions and microbes only in the chamber the female prepares for the egg. The use of autoclaved dung for rearing, the presence of microbes in the brood ball and offspring, and identical 16S rRNA sequences in both parent and offspring suggests that the O. taurus female parent transmits specific microbiome members to her offspring through the brood chamber. The transmission of the dung beetle microbiome highlights the maintenance and likely importance of this newly-characterized bacterial community. 相似文献