首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1218篇
  免费   90篇
  2023年   6篇
  2022年   16篇
  2021年   35篇
  2020年   23篇
  2019年   29篇
  2018年   41篇
  2017年   26篇
  2016年   48篇
  2015年   64篇
  2014年   74篇
  2013年   102篇
  2012年   83篇
  2011年   87篇
  2010年   58篇
  2009年   57篇
  2008年   72篇
  2007年   68篇
  2006年   69篇
  2005年   56篇
  2004年   39篇
  2003年   48篇
  2002年   46篇
  2001年   9篇
  2000年   4篇
  1999年   11篇
  1998年   8篇
  1997年   9篇
  1996年   15篇
  1995年   12篇
  1994年   6篇
  1993年   7篇
  1992年   7篇
  1991年   8篇
  1990年   6篇
  1989年   8篇
  1988年   6篇
  1987年   5篇
  1986年   2篇
  1985年   6篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   2篇
  1978年   2篇
  1976年   3篇
  1973年   2篇
  1958年   1篇
  1953年   1篇
  1933年   1篇
排序方式: 共有1308条查询结果,搜索用时 15 毫秒
61.
Gross cystic disease fluid protein (GCDFP-15), also known as prolactin-inducible protein (PIP), is a specific breast tumor marker. GCDFP-15/PIP is also identified as gp17 and/or seminal actin-binding protein (SABP) from seminal vesicles and as extraparotid glycoprotein (EP-GP) from salivary glands. It is an aspartyl proteinase able to specifically cleave fibronectin (FN), suggesting a possible involvement in mammary tumor progression and fertilization. Other functions were attributed to this protein(s) on the basis of its ability to interact with an array of molecules such as CD4, actin, and fibrinogen. We investigated the structure of the protein(s) under disease versus physiological conditions by RP-HPLC chromatography, ProteinChip technology, and QStar MS/MS mass spectrometry. The proteins behaved differently when examined by RP-HPLC chromatography and surface-enhanced laser desorption ionization time-of-flight (SELDI-TOF) mass spectrometry, suggesting different conformations and/or tissue-specific posttranslational modifications of the proteins, although their primary structure was identical by MS/MS analysis. Both showed a single N-glycosylation site. A different N-linked glycosylation pattern was observed in pathological GCDFP-15/PIP as compared with physiological gp17/SABP protein by coupling enzymatic digestion and ProteinChip technology. Furthermore, taking advantage of ProteinChip technology, we analyzed the interaction of both proteins with CD4 and FN. We observed that the physiological form was mainly involved in the binding to CD4. Moreover, we defined the specific FN binding-domain of this protein. These data suggested that, depending on its conformational state, the protein could differently bind to its various binding molecules and change its function(s) in the microenviroments where it is expressed.  相似文献   
62.
Five genes involved in the two initial steps of the tetralin biodegradation pathway of Sphingomonas macrogolitabida strain TFA have been characterized. ThnA1A2 and ThnA3A4, components of the ring-hydroxylating dioxygenase, were encoded in divergently transcribed operons. ThnA1, ThnA2, and ThnA3 were essential for tetralin ring-hydroxylating dioxygenase activity. ThnB was identified as a dehydrogenase required for tetralin biodegradation.  相似文献   
63.
The new discipline of Evolutionary Developmental Biology (Evo-Devo) is facing the fascinating paradox of explaining morphological evolution using conserved pieces or genes to build divergent animals. The cephalochordate amphioxus is the closest living relative to the vertebrates, with a simple, chordate body plan, and a genome directly descended from the ancestor prior to the genome-wide duplications that occurred close to the origin of vertebrates. Amphioxus morphology may have remained relatively invariant since the divergence from the vertebrate lineage, but the amphioxus genome has not escaped evolution. We report the isolation of a second Emx gene (AmphiEmxB) arising from an independent duplication in the amphioxus genome. We also argue that a tandem duplication probably occurred in the Posterior part of the Hox cluster in amphioxus, giving rise to AmphiHox14, and discuss the structure of the chordate and vertebrate ancestral clusters. Also, a tandem duplication of Evx in the amphioxus lineage produced a prototypical Evx gene (AmphiEvxA) and a divergent gene (AmphiEvxB), no longer involved in typical Evx functions. These examples of specific gene duplications in amphioxus, and other previously reported duplications summarized here, emphasize the fact that amphioxus is not the ancestor of the vertebrates but 'only' the closest living relative to the ancestor, with a mix of prototypical and amphioxus-specific features in its genome.  相似文献   
64.
When yeast cells are inoculated into grape must for vinification they find stress conditions because of osmolarity, which is due to very high sugar concentration, and pH lower than 4. In this work an analysis of the expression of three osmotic stress induced genes (GPD1, HSP12 and HSP104) under microvinification conditions is shown as a way to probe those stress situations and the regulatory mechanisms that control them. The results indicate that during the first hours of microvinification there is an increase in the GPDI mRNA levels with a maximum about one hour after inoculation, and a decrease in the amount of HSP12 and HSP104 mRNAs, although with differences between them. The RNA steady-state levels of all the genes considered, and in some cases the microvinification progress are significantly affected by the composition of the must (pH, nature of the osmotic agent and carbon source). These results point out the importance of the control of these parameters and the yeast molecular response during the first hours of vinification for an accurate winemaking process.  相似文献   
65.
The DNA-binding proteins from starved cells (Dps) are a family of proteins induced in microorganisms by oxidative or nutritional stress. Escherichia coli Dps, a structural analog of the 12-subunit Listeria innocua ferritin, binds and protects DNA against oxidative damage mediated by H(2)O(2). Dps is shown to be a Fe-binding and storage protein where Fe(II) oxidation is most effectively accomplished by H(2)O(2) rather than by O(2) as in ferritins. Two Fe(2+) ions bind at each of the 12 putative dinuclear ferroxidase sites (P(Z)) in the protein according to the equation, 2Fe(2+) + P(Z) --> [(Fe(II)(2)-P](FS)(Z+2) + 2H(+). The ferroxidase site (FS) bound iron is then oxidized according to the equation, [(Fe(II)(2)-P](FS)(Z+2) + H(2)O(2) + H(2)O --> [Fe(III)(2)O(2)(OH)-P](FS)(Z-1) + 3H(+), where two Fe(II) are oxidized per H(2)O(2) reduced, thus avoiding hydroxyl radical production through Fenton chemistry. Dps acquires a ferric core of approximately 500 Fe(III) according to the mineralization equation, 2Fe(2+) + H(2)O(2) + 2H(2)O --> 2Fe(III)OOH((core)) + 4H(+), again with a 2 Fe(II)/H(2)O(2) stoichiometry. The protein forms a similar ferric core with O(2) as the oxidant, albeit at a slower rate. In the absence of H(2)O(2) and O(2), Dps forms a ferrous core of approximately 400 Fe(II) by the reaction Fe(2+) + H(2)O + Cl(-) --> Fe(II)OHCl((core)) + H(+). The ferrous core also undergoes oxidation with a stoichiometry of 2 Fe(II)/H(2)O(2). Spin trapping experiments demonstrate that Dps greatly attenuates hydroxyl radical production during Fe(II) oxidation by H(2)O(2). These results and in vitro DNA damage assays indicate that the protective effect of Dps on DNA most likely is exerted through a dual action, the physical association with DNA and the ability to nullify the toxic combination of Fe(II) and H(2)O(2). In the latter process a hydrous ferric oxide mineral core is produced within the protein, thus avoiding oxidative damage mediated by Fenton chemistry.  相似文献   
66.
The results of the epidemiological study on candidemias with the highest number of cases carried out in Spain is presented. This study is included in the Epidemiological Survey of Candidemia in Europe supported by the ECMM in which another five countries take part. In the Spanish study, 19 hospitals participated, 290 candidemia episodes were analysed (80 in children under 15 years and 210 in adults), 293 strains of yeasts being isolated. Both in children and in adults, the risks factors more frequently observed were the intravenous catheter and previous antibiotic therapy. In adults, the most habitual underlying disease was the solid tumor and, in children, hematological diseases. Candida albicans was the most prevalent species isolated in adults (46.1%) and Candida parapsilosis in children (50%). As part of the therapy, the intravenous line was removed and antifungal treatment was prescribed to 74% and 92.5% of children, respectively and to 43.8% and 73.8% of adults. The antifungal agent of election in adults was fluconazole (54.8%) and liposomal amphotericin B (58.1%) in children. The global mortality of the study was 38.9%, which for ages was major in adults (41.4%) than in children (38.7%). The geographical distribution of the isolated species was homogeneous, C. albicans being the predominant species, with the exception of Galicia and Extremadura where C. parapsilosis was the most frequent.  相似文献   
67.
68.
The role of trehalose as cell protector against oxidative stress induced by H(2)O(2) has been studied in Saccharomyces cerevisiae mutants in which the two trehalase genes ATH1 and NTH1 are deleted. The addition of low H(2)O(2) concentrations to proliferating cultures of either strain did not harm cell viability and induced a marked activity to Nth1p, but with no significant level of trehalose accumulation. This pattern was reversed after a more severe H(2)O(2) treatment that caused drastic cell killing. The most severe phenotype corresponded to the Delta nth1 mutant. Under these conditions, the increase in Nth1p was abolished and a three-fold rise in trehalose content was recorded concomitant with activation of the trehalose synthase complex. The behavior of the double-disruptant Delta ath1Delta nth1 mutant was identical to that of wild-type cells, although in exponential cultures Ath1p activity was virtually undetectable upon exposure to H(2)O(2). Furthermore, these strains displayed an adaptive response to oxidative stress that was independent of intracellular trehalose synthesis. Our data strongly suggest that trehalose storage in budding yeasts is not an essential protectant in cell defense against oxidative challenge.  相似文献   
69.
70.
Glutaredoxins (Grx) are small (approximately 12kDa) proteins which catalyze thiol disulfide oxidoreductions involving glutathione (GSH) and disulfides in proteins or small molecules. Here, we present data which demonstrate the ability of glutaredoxins to catalyze the reduction of oxidized glutathione (GSSG) by dihydrolipoamide (DHL), an important biological redox catalyst and synthetic antioxidant. We have designed a new assay method to quantify the rate of reduction of GSSG and other disulfides by reduced lipoamide and have tested a set of eight recombinant Grx from human, rat, yeast, and E. coli. Lipoamide dependent activity is highest with the large atypical E. coli Grx2 (k(cat)=3.235 min(-1)) and lowest for human mitochondrial Grx2a (k(cat)=96 min(-1)) covering a wider range than k(cat) for the standard reduction of hydroxyethyldisulfide (HED) by GSH (290-2.851 min(-1)). The lipoamide/HED activity ratio was highest for yeast Grx2 (1.25) and E. coli Grx2 and lowest for E. coli Grx1 (0.13). These results suggest a new role for Grxs as ancillary proteins that could shunt reducing equivalents from main catabolic pathways to recycling of GSSG via a lipoyl group, thus serving biochemical functions which involve GSH but without NAD(P)H consumption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号