首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1178篇
  免费   84篇
  1262篇
  2023年   5篇
  2022年   16篇
  2021年   35篇
  2020年   23篇
  2019年   27篇
  2018年   39篇
  2017年   26篇
  2016年   47篇
  2015年   63篇
  2014年   73篇
  2013年   101篇
  2012年   79篇
  2011年   87篇
  2010年   55篇
  2009年   56篇
  2008年   69篇
  2007年   66篇
  2006年   65篇
  2005年   55篇
  2004年   38篇
  2003年   44篇
  2002年   43篇
  2001年   7篇
  2000年   3篇
  1999年   10篇
  1998年   7篇
  1997年   9篇
  1996年   12篇
  1995年   12篇
  1994年   6篇
  1993年   7篇
  1992年   6篇
  1991年   8篇
  1990年   6篇
  1989年   8篇
  1988年   6篇
  1987年   5篇
  1986年   2篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   2篇
  1978年   2篇
  1976年   3篇
  1965年   1篇
  1958年   1篇
  1953年   1篇
  1933年   1篇
排序方式: 共有1262条查询结果,搜索用时 15 毫秒
101.
102.
Legumes can acquire nitrogen through a symbiotic interaction with rhizobial bacteria. The initiation of this process is determined by a molecular dialogue between the two partners. Legume roots exude flavonoids that induce the expression of the bacterial nodulation genes, which encode proteins involved in the synthesis and secretion of signals called Nod factors (NFs). NFs signal back to the plant root and trigger several responses, leading to bacterial invasion and nodule formation. Here, we describe the molecular and cellular characterization of a Phaseolus vulgaris non-nodulating mutant (NN-mutant). Root hair cells of the NN-mutant plant respond with swelling and branching when inoculated with Rhizobium etli, albeit without curling induction. Furthermore, neither initiation of cell division in the outer cortex, nor entrapment of bacteria nor infection thread formation was observed. Both the bean wild-type and the NN-mutant responded with elevated intracellular calcium changes in the root hairs. Although the NN-mutant is deficient in early nodulin gene expression when inoculated with R. etli, it can be effectively colonized by arbuscular mycorrhizal fungi (Glomus intraradices). Our data indicate that the P. vulgaris NN-mutant is not blocked at the NFs early perception stage, but at later downstream stages between Ca2+ signaling and early nodulin induction. This supports the idea that both microsymbionts are perceived and trigger different downstream pathways in the host plant.  相似文献   
103.
Enzymatic esterification of starch using recovered coconut oil   总被引:3,自引:0,他引:3  
Modification of maize and cassava starches was done using recovered coconut oil and microbial lipase. Microwave esterification was advantageous as it gave a DS 1.55 and 1.1 for maize starch and cassava starch, respectively. Solution state esterification of cassava starch for 36 h at 60 °C gave a DS of 0.08 and semi-solid state esterification gave a DS of 0.43. TGA and DSC studies showed that the higher DS attributed to the thermostability, since onset of decomposition is at a higher temperature (492 °C) than the unmodified (330 °C) and was stable above 600 °C. -Amylase digestibility and viscosity reduced for modified starch.  相似文献   
104.
The role of macrophages, their products, and the specific antibody response were examined during chronic Trichinella spiralis infection in BALB/c mice. Adult T. spiralis in intestines were detected from 5 to 20 dpi. Muscle larvae numbers peaked at 45 dpi and thereafter a reduction was noted. The highest numbers of macrophages in the peritoneal cavity of infected mice were obtained up to 30 dpi. The production of NO by macrophages in infected mice was suppressed at 5 dpi, and then NO release increased until 45 dpi. The levels of NO in plasma and urine were lower in infected mice during the entire experiment in comparison to control. The production of O(2)(-) in peritoneal macrophages was inhibited during the first two weeks after infection and then increased until 90 dpi. Circulating T. spiralis antigens in plasma and urine were detected from 5 to 30 dpi. Specific IgM and IgA in serum increased until 20 dpi. IgG, IgG(1), and IgG(2) levels in serum increased until 60 dpi.  相似文献   
105.
Salmonella Dakar and Salmonella Telaviv bacteria belong to serogroup O:28, which represents 107 serovars and possesses only the epitope O28. Salmonella Telaviv has the subfactors O28(1) and O28(2) , whereas S. Dakar has O28(1) and O28(3) . So far, only limited serological and immunological information for this serogroup is available in the literature. Knowledge of the structures of their O-polysaccharides and the immunochemical investigations performed in this work allowed to reveal the nature of subfactor O28(1) as attributed to the presence of 3-linked (or 3,4-disubstituted) α-d-GalpNAc in the main chains of S. Dakar and S. Telaviv O-polysaccharides. An explanation for the cross-reactions between Salmonella enterica O28 O-antigens and other Salmonella O-polysaccharides and their structural similarity to Escherichia coli O-serogroups is also given.  相似文献   
106.
In this work, the behavior of the neurohypophyseal hormones and their selected analogs was studied in the presence of membrane models in an attempt to correlate their activities with a distinct behavior at a level of peptide-lipid interactions. The influence of the peptides studied on the lipid acyl chain order was determined using FTIR spectroscopy. Conformational changes in the peptides upon binding to liposomes were examined using CD spectra. Attempts were also made to determine the binding parameters of the peptides to lipids using isothermal titration calorimetry (ITC). The results show unambiguously that the neurohyphophyseal hormone-like peptides interact with lipids, being a model of a eukaryotic cell membrane. Moreover, hydrophobic interactions between the peptides and liposomes are likely to determine the overall conformation of the peptide, especially below the temperature of the main phase transition (T(m)). Thus, the bulky and hydrophobic nature of the residues incorporated into the N-terminal part of neurohyphophyseal hormones is an important factor for both restriction of peptide mobility and the interaction of the analog with biomembrane. In turn, above T(m), the electrostatic interactions become also relevant for the conformation of the acyclic tail of the AVP-like peptides.  相似文献   
107.
Activation of the high affinity IgE-binding receptor (FcεRI) results in the tyrosine phosphorylation of two conserved tyrosines located close to the COOH terminus of the protein-tyrosine kinase Syk. Synthetic peptides representing the last 10 amino acids of the tail of Syk with these two tyrosines either nonphosphorylated or phosphorylated were used to precipitate proteins from mast cell lysates. Proteins specifically precipitated by the phosphorylated peptide were identified by mass spectrometry. These included the adaptor proteins SLP-76, Nck-1, Grb2, and Grb2-related adaptor downstream of Shc (GADS) and the protein phosphatases SHIP-1 and TULA-2 (also known as UBASH3B or STS-1). The presence of these in the precipitates was further confirmed by immunoblotting. Using the peptides as probes in far Western blots showed direct binding of the phosphorylated peptide to Nck-1 and SHIP-1. Immunoprecipitations suggested that there were complexes of these proteins associated with Syk especially after receptor activation; in these complexes are Nck, SHIP-1, SLP-76, Grb2, and TULA-2 (UBASH3B or STS-1). The decreased expression of TULA-2 by treatment of mast cells with siRNA increased the FcεRI-induced tyrosine phosphorylation of the activation loop tyrosines of Syk and the phosphorylation of phospholipase C-γ2. There was parallel enhancement of the receptor-induced degranulation and activation of nuclear factor for T cells or nuclear factor κB, indicating that TULA-2, like SHIP-1, functions as a negative regulator of FcεRI signaling in mast cells. Therefore, once phosphorylated, the terminal tyrosines of Syk bind complexes of proteins that are positive and negative regulators of signaling in mast cells.  相似文献   
108.
The recent elucidation of crystal structures of a bacterial member of the NCS1 family, the Mhp1 benzyl-hydantoin permease from Microbacterium liquefaciens, allowed us to construct and validate a three-dimensional model of the Aspergillus nidulans purine-cytosine/H+ FcyB symporter. The model consists of 12 transmembrane α-helical, segments (TMSs) and cytoplasmic N- and C-tails. A distinct core of 10 TMSs is made of two intertwined inverted repeats (TMS1–5 and TMS6–10) that are followed by two additional TMSs. TMS1, TMS3, TMS6, and TMS8 form an open cavity that is predicted to host the substrate binding site. Based on primary sequence alignment, three-dimensional topology, and substrate docking, we identified five residues as potentially essential for substrate binding in FcyB; Ser-85 (TMS1), Trp-159, Asn-163 (TMS3), Trp-259 (TMS6), and Asn-354 (TMS8). To validate the role of these and other putatively critical residues, we performed a systematic functional analysis of relevant mutants. We show that the proposed substrate binding residues, plus Asn-350, Asn-351, and Pro-353 are irreplaceable for FcyB function. Among these residues, Ser-85, Asn-163, Asn-350, Asn-351, and Asn-354 are critical for determining the substrate binding affinity and/or the specificity of FcyB. Our results suggest that Ser-85, Asn-163, and Asn-354 directly interact with substrates, Trp-159 and Trp-259 stabilize binding through π-π stacking interactions, and Pro-353 affects the local architecture of substrate binding site, whereas Asn-350 and Asn-351 probably affect substrate binding indirectly. Our work is the first systematic approach to address structure-function-specificity relationships in a eukaryotic member of NCS1 family by combining genetic and computational approaches.  相似文献   
109.
The insulin receptor isoform A (IR-A) binds both insulin and insulin-like growth factor (IGF)-II, although the affinity for IGF-II is 3-10-fold lower than insulin depending on a cell and tissue context. Notably, in mouse embryonic fibroblasts lacking the IGF-IR and expressing solely the IR-A (R-/IR-A), IGF-II is a more potent mitogen than insulin. As receptor endocytosis and degradation provide spatial and temporal regulation of signaling events, we hypothesized that insulin and IGF-II could affect IR-A biological responses by differentially regulating IR-A trafficking. Using R-/IR-A cells, we discovered that insulin evoked significant IR-A internalization, a process modestly affected by IGF-II. However, the differential internalization was not due to IR-A ubiquitination. Notably, prolonged stimulation of R-/IR-A cells with insulin, but not with IGF-II, targeted the receptor to a degradative pathway. Similarly, the docking protein insulin receptor substrate 1 (IRS-1) was down-regulated after prolonged insulin but not IGF-II exposure. Similar results were also obtained in experiments using [NMeTyr(B26)]-insulin, an insulin analog with IR-A binding affinity similar to IGF-II. Finally, we discovered that IR-A was internalized through clathrin-dependent and -independent pathways, which differentially regulated the activation of downstream effectors. Collectively, our results suggest that a lower affinity of IGF-II for the IR-A promotes lower IR-A phosphorylation and activation of early downstream effectors vis à vis insulin but may protect IR-A and IRS-1 from down-regulation thereby evoking sustained and robust mitogenic stimuli.  相似文献   
110.
12/15-Lipoxygenases (LOXs) in monocytes and macrophages generate novel phospholipid-esterified eicosanoids. Here, we report the generation of two additional families of related lipids comprising 15-ketoeicosatetraenoic acid (KETE) attached to four phosphatidylethanolamines (PEs). The lipids are generated basally by 15-LOX in IL-4-stimulated monocytes, are elevated on calcium mobilization, and are detected at increased levels in bronchoalveolar lavage fluid from cystic fibrosis patients (3.6 ng/ml of lavage). Murine peritoneal macrophages generate 12-KETE-PEs, which are absent in 12/15-LOX-deficient mice. Inhibition of 15-prostaglandin dehydrogenase prevents their formation from exogenous 15-hydroxyeicosatetraenoic acid-PE in human monocytes. Both human and murine cells also generated analogous hydroperoxyeicosatetraenoic acid-PEs. The electrophilic reactivity of KETE-PEs is shown by their Michael addition to glutathione and cysteine. Lastly, both 15-hydroxyeicosatetraenoic acid-PE and 15-KETE-PE activated peroxisome proliferator-activated receptor-γ reporter activity in macrophages in a dose-dependent manner. In summary, we demonstrate novel peroxisome proliferator-activated receptor-γ-activating oxidized phospholipids generated enzymatically by LOX and 15-prostaglandin dehydrogenase in primary monocytic cells and in a human Th2-related lung disease. The lipids are a new family of bioactive mediators from the 12/15-LOX pathway that may contribute to its known anti-inflammatory actions in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号