首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1296篇
  免费   99篇
  2023年   5篇
  2022年   14篇
  2021年   35篇
  2020年   23篇
  2019年   27篇
  2018年   40篇
  2017年   28篇
  2016年   49篇
  2015年   68篇
  2014年   76篇
  2013年   105篇
  2012年   88篇
  2011年   97篇
  2010年   62篇
  2009年   62篇
  2008年   78篇
  2007年   72篇
  2006年   75篇
  2005年   62篇
  2004年   44篇
  2003年   51篇
  2002年   51篇
  2001年   12篇
  2000年   9篇
  1999年   13篇
  1998年   8篇
  1997年   9篇
  1996年   13篇
  1995年   12篇
  1994年   9篇
  1993年   7篇
  1992年   8篇
  1991年   8篇
  1990年   6篇
  1989年   9篇
  1988年   8篇
  1987年   7篇
  1986年   2篇
  1985年   7篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1978年   2篇
  1976年   3篇
  1973年   2篇
  1958年   1篇
  1953年   1篇
  1933年   1篇
排序方式: 共有1395条查询结果,搜索用时 490 毫秒
991.
The elucidation of the signalling pathways involved in inflammatory diseases, such as rheumatoid arthritis, could provide long sought after targets for therapeutic intervention. Gene regulation is complex and varies depending on the cell type, as well as the signal eliciting gene activation. However, cells from certain lineages, such as macrophages, are specialised to degrade exogenous material and consequently do not easily transfect. Methods for high-efficiency gene transfer into primary cells of various lineages and disease states are desirable, as they remove the uncertainties associated with using transformed cell lines. Significant research has been undertaken into the development of nonviral and viral vectors for basic research, and as vehicles for gene therapy. We briefly review the current methods of gene delivery and the difficulties associated with each system. Adenoviruses have been used extensively to examine the role of various cytokines and signal transduction molecules in the pathogenesis of rheumatoid arthritis. This review will focus on the involvement of different signalling molecules in the production of tumour necrosis factor alpha by macrophages and in rheumatoid synovium. While the NF-kappaB pathway has proven to be a major mediator of tumour necrosis factor alpha production, it is not exclusive and work evaluating the involvement of other pathways is ongoing.  相似文献   
992.
The aim of this study was to investigate the Cr(VI) biosorption potential of immobilized Rhizopus nigricans and to screen a variety of non-toxic desorbing agents, in order to find out possible application in multiple sorption-desorption cycles. The biomass was immobilized by various mechanisms and evaluated for removal of Cr(VI) from aqueous solution, mechanical stability to desorbents, and reuse in successive cycles. The finely powdered biomass, entrapped in five different polymeric matrices viz. calcium alginate, polyvinyl alcohol (PVA), polyacrylamide, polyisoprene, and polysulfone was compared for biosorption efficiency and stability to desorbents. Physical immobilization to polyurethane foam and coir fiber was less efficient than polymer entrapment methods. Of the different combinations (%, w/v) of biomass dose compared for each matrix, 8% (calcium alginate), 6% (polyacrylamide and PVA), 12% (polyisoprene), and 10% (polysulfone) were found to be the optimum. The Cr sorption capacity (mg Cr/g sorbent) of all immobilized biomass was lesser than the native, powdered biomass. The Cr sorption capacity decreased in the order of free biomass (119.2) > polysulfone entrapped (101.5) > polyisoprene immobilized (98.76) > PVA immobilized (96.69) > calcium alginate entrapped (84.29) > polyacrylamide (45.56), at 500 mg/l concentration of Cr(VI). The degree of mechanical stability and chemical resistance of the immobilized systems were in the order of polysulfone > polyisoprene > PVA > polyacrylamide > calcium alginate. The bound Cr(VI) could be eluted successfully using 0.01 N NaOH, NaHCO3, and Na2CO3. The adsorption data for the native and the immobilized biomass was evaluated by the Freundlich isotherm model. The successive sorption-desorption studies employing polysulfone entrapped biomass indicated that the biomass beads could be regenerated and reused in more than 25 cycles and the regeneration efficiency was 75-78%.  相似文献   
993.
994.
Drug resistance to HIV-1 protease involves the accumulation of multiple mutations in the protein. We investigate the role of these mutations by using molecular dynamics simulations that exploit the influence of the native-state topology in the folding process. Our calculations show that sites contributing to phenotypic resistance of FDA-approved drugs are among the most sensitive positions for the stability of partially folded states and should play a relevant role in the folding process. Furthermore, associations between amino acid sites mutating under drug treatment are shown to be statistically correlated. The striking correlation between clinical data and our calculations suggest a novel approach to the design of drugs tailored to bind regions crucial not only for protein function, but for folding as well.  相似文献   
995.
996.
997.
The fluorescent probe, 9-anthroylnitrile (ANN), can selectively attach to Ser-180 at the ATP-binding site of subfragment 1 (S1) of skeletal muscle myosin [J. Biol. Chem. 278 (2003) 31891]. We have found that MgATP, MgATPgammaS, MgADP.AlF(4) or MgPP(i), but not MgADP, inhibit the incorporation of ANN into S1. The inhibitory effect of the nucleotide gamma-phosphate group (or its analog) on the modification of S1 with ANN can be explained by the contribution of Ser-180 to the binding of the nucleotide gamma-phosphate at the active site of S1. We have also observed that the incorporation of ANN into S1.MgADP complex is inhibited by actin. These experimental data strongly support the existence of nucleotide-promoted conformational changes revealed by crystal structures of S1 complexes with various nucleotide analogs. They also convincingly show an effect of actin on the environment of Ser-180 at the nucleotide binding site of S1.  相似文献   
998.
999.
Pantano S  Carloni P 《Proteins》2005,58(3):638-643
HIV-1 Tat protein is a crucial element for viral replication; therefore, its inhibition might be exploited against the AIDS infection. To gain insights on the natural variability of this protein, we present a comparative investigation on the relationship between the primary sequences and the experimentally available three-dimensional structures from the HIV-1 Tat variants Z2, BRU, and MAL. Our computational tools include sequence conservation algorithms, structural analysis, electrostatic modeling, and molecular dynamics (MD) simulations. We find that two regions located between residues 10-18 and 41-52 display the highest primary sequence conservation, while the most conserved region among the available structures corresponds approximately to the segment between positions approximately 44 and 50. Furthermore, in spite of their large structural divergence, Tat variants share a common mode for long-range intramolecular interactions. Finally, the flexibility of the Z2, BRU, and MAL variants, as emerging from multinanosecond MD simulations, is rather similar. Based on this work, we conclude that the turnlike region between amino acids 44 and 50 is structurally most conserved, emerging as an important motif for pharmaceutical targeting aimed toward inhibiting Tat action.  相似文献   
1000.
The enzyme 3-deoxy-D-manno-2-octulosonate-8-phosphate synthase (KDO8PS) catalyses the condensation of arabinose 5-phosphate (A5P) and phosphoenol pyruvate (PEP) to obtain 3-deoxy-D-manno-2-octulosonate-8-phosphate (KDO8P). We have elucidated initial modes of ligand binding in KDO8PS binary complexes by X-ray crystallography. Structures of the apo-enzyme and of binary complexes with the substrate PEP, the product KDO8P and the catalytically inactive 1-deoxy analog of arabinose 5-phosphate (1dA5P) were obtained. The KDO8PS active site resembles an irregular funnel with positive electrostatic potential situated at the bottom of the PEP-binding sub-site, which is the primary attractive force towards negatively charged phosphate moieties of all ligands. The structures of the ligand-free apo-KDO8PS and the binary complex with the product KDO8P visualize for the first time the role of His202 as an active-site gate. Examination of the crystal structures of KDO8PS with the KDO8P or 1dA5P shows these ligands bound to the enzyme in the PEP-binding sub-site, and not as expected to the A5P sub-site. Taken together, the structures presented here strengthen earlier evidence that this enzyme functions predominantly through positional catalysis, map out the roles of active-site residues and provide evidence that explains the total lack of catalytic reversibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号