首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   14篇
  217篇
  2023年   5篇
  2022年   3篇
  2021年   9篇
  2020年   2篇
  2019年   4篇
  2018年   6篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   5篇
  2013年   7篇
  2012年   12篇
  2011年   11篇
  2010年   15篇
  2009年   10篇
  2008年   12篇
  2007年   16篇
  2006年   12篇
  2005年   22篇
  2004年   11篇
  2003年   12篇
  2002年   15篇
  2001年   4篇
  2000年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
排序方式: 共有217条查询结果,搜索用时 0 毫秒
91.
92.
Proportionality of phenotypic and genetic distance is of crucial importance to adequately focus on population history and structure, and it depends on the proportionality of genetic and phenotypic covariance. Constancy of phenotypic covariances is unlikely without constancy of genetic covariation if the latter is a substantial component of the former. If phenotypic patterns are found to be relatively stable, the most probable explanation is that genetic covariance matrices are also stable. Factors like morphological integration account for such stability. Morphological integration can be studied by analyzing the relationships among morphological traits. We present here a comparison of phenotypic correlation and covariance structure among worldwide human populations. Correlation and covariance matrices between 47 cranial traits were obtained for 28 populations, and compared with design matrices representing functional and developmental constraints. Among-population differences in patterns of correlation and covariation were tested for association with matrices of genetic distances (obtained after an examination of 10 Alu-insertions) and with Mahalanobis distances (computed after craniometrical traits). All matrix correlations were estimated by means of Mantel tests. Results indicate that correlation and covariance structure in our species is stable, and that among-group correlation/covariance similarity is not related to genetic or phenotypic distance. Conversely, genetic and morphological distance matrices were highly correlated. Correlation and covariation patterns were largely associated with functional and developmental factors, which probably account for the stability of covariance patterns.  相似文献   
93.
Proteins play an essential role in the vital biological processes governing cellular functions. Most proteins function as members of macromolecular machines, with the network of interacting proteins revealing the molecular mechanisms driving the formation of these complexes. Profiling the physiology-driven remodeling of these interactions within different contexts constitutes a crucial component to achieving a comprehensive systems-level understanding of interactome dynamics. Here, we apply co-fractionation mass spectrometry and computational modeling to quantify and profile the interactions of ∼2000 proteins in the bacterium Escherichia coli cultured under 10 distinct culture conditions. The resulting quantitative co-elution patterns revealed large-scale condition-dependent interaction remodeling among protein complexes involved in diverse biochemical pathways in response to the unique environmental challenges. The network-level analysis highlighted interactome-wide biophysical properties and structural patterns governing interaction remodeling. Our results provide evidence of the local and global plasticity of the E. coli interactome along with a rigorous generalizable framework to define protein interaction specificity. We provide an accompanying interactive web application to facilitate the exploration of these rewired networks.  相似文献   
94.
Prediction of protein–protein interactions (PPIs) commonly involves a significant computational component. Rapid recent advances in the power of computational methods for protein interaction prediction motivate a review of the state-of-the-art. We review the major approaches, organized according to the primary source of data utilized: protein sequence, protein structure, and protein co-abundance. The advent of deep learning (DL) has brought with it significant advances in interaction prediction, and we show how DL is used for each source data type. We review the literature taxonomically, present example case studies in each category, and conclude with observations about the strengths and weaknesses of machine learning methods in the context of the principal sources of data for protein interaction prediction.  相似文献   
95.
The budding yeast centromere-kinetochore complex ensures high-fidelity chromosome segregation in mitosis and meiosis by mediating the attachment and movement of chromosomes along spindle microtubules. To identify new genes and pathways whose function impinges on chromosome transmission, we developed a genomic haploinsufficiency modifier screen and used ctf13-30, encoding a mutant core kinetochore protein, as the reference point. We demonstrate through a series of secondary screens that the genomic modifier screen is a successful method for identifying genes that encode nonessential proteins required for the fidelity of chromosome segregation. One gene isolated in our screen was RSC2, a nonessential subunit of the RSC chromatin remodeling complex. rsc2 mutants have defects in both chromosome segregation and cohesion, but the localization of kinetochore proteins to centromeres is not affected. We determined that, in the absence of RSC2, cohesin could still associate with chromosomes but fails to achieve proper cohesion between sister chromatids, indicating that RSC has a role in the establishment of cohesion. In addition, numerous subunits of RSC were affinity purified and a new component of RSC, Rtt102, was identified. Our work indicates that only a subset of the nonessential RSC subunits function in maintaining chromosome transmission fidelity.  相似文献   
96.
Analysis of anteroposterior (AP) axis specification in regenerating planarian flatworms has shown that Wnt/β-catenin signaling is required for posterior specification and that the FGF-like receptor molecule nou-darake (ndk) may be involved in restricting brain regeneration to anterior regions. The relationship between re-establishment of AP identity and correct morphogenesis of the brain is, however, still poorly understood. Here we report the characterization of two axin paralogs in the planarian Schmidtea mediterranea. Although Axins are well known negative regulators of Wnt/β-catenin signaling, no role in AP specification has previously been reported for axin genes in planarians. We show that silencing of Smed-axin genes by RNA interference (RNAi) results in two-tailed planarians, a phenotype previously reported after silencing of Smed-APC-1, another β-catenin inhibitor. More strikingly, we show for the first time that while early brain formation at anterior wounds remains unaffected, subsequent development of the brain is blocked in the two-tailed planarians generated after silencing of Smed-axin genes and Smed-APC-1. These findings suggest that the mechanisms underlying early brain formation can be uncoupled from the specification of AP identity by the Wnt/β-catenin pathway. Finally, the posterior expansion of the brain observed following Smed-ndk RNAi is enhanced by silencing Smed-APC-1, revealing an indirect relationship between the FGFR/Ndk and Wnt/β-catenin signaling systems in establishing the posterior limits of brain differentiation.  相似文献   
97.
98.
Wnt proteins are a family of highly conserved secreted glycoproteins that regulate cell-to-cell interactions during embryogenesis. They act as signaling molecules and take part in many crucial decisions throughout the development of organisms ranging from Hydra to human. We have isolated and characterized the expression of a member of the Wnt family, Gtwnt-5 gene in the planarian Girardia tigrina. Planarians are free-living members (Class Turbellaria) of the Phylum Platyhelminthes. They are best known for their high regenerative capabilities. These organisms have an apparently simple central nervous system (CNS) from a morphological perspective, with cephalic ganglia in the dorsal anterior region and two ventral main nerve cords along the body. However, a large number of planarian neural genes have recently been identified and therefore it is possible to define different molecular and functional domains in the planarian brain. The present study shows expression of Gtwnt-5 in a subpopulation of the whole CNS of intact organisms, being activated during regeneration. Gtwnt-5 reveals a differential spatial pattern: the expression is preferentially found in the most external region of the CNS. In addition, a kind of iterative pattern has been observed at the ganglia level, suggesting that the planarian brain might not be a continuous structure but compartmented or regionalized. Gtwnt-5 signal is also detected at the sensors of the worm: at the auricle level and all around the cephalic periphery. All these data provide us with a new neural marker for the planarian brain, and can be used to follow regeneration of the CNS.  相似文献   
99.
Elongation factor RbbA is required for ATP-dependent deacyl-tRNA release presumably after each peptide bond formation; however, there is no information about the cellular role. Proteomic analysis in Escherichia coli revealed that RbbA reciprocally co-purified with a conserved inner membrane protein of unknown function, YhjD. Both proteins are also physically associated with the 30S ribosome and with members of the lipopolysaccharide transport machinery. Genome-wide genetic screens of rbbA and yhjD deletion mutants revealed aggravating genetic interactions with mutants deficient in the electron transport chain. Cells lacking both rbbA and yhjD exhibited reduced cell division, respiration and global protein synthesis as well as increased sensitivity to antibiotics targeting the ETC and the accuracy of protein synthesis. Our results suggest that RbbA appears to function together with YhjD as part of a regulatory network that impacts bacterial oxidative phosphorylation and translation efficiency.  相似文献   
100.
The growth of many organisms is seasonal, with a dependence on variation in temperature, light, and food availability. A growth model proposed by Somers (Fishbyte 6:8?C11, 1988) is one of the most widely used models to describe seasonal growth. We point out that three different formulae (beyond numerous typographical errors) have been used in the literature referring to Somers (Fishbyte 6:8?C11, 1988). These formulae correspond to different curves and yield different parameter estimates with different biological interpretations. These inconsistencies have led to the wrong identification of the period of lowest growth rate (winter point) in some papers of the literature. We urge authors to carefully edit their formulae to assure use of the original definition in Somers (Fishbyte 6:8?C11, 1988).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号