首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   500篇
  免费   60篇
  2023年   2篇
  2021年   7篇
  2020年   4篇
  2019年   8篇
  2018年   12篇
  2017年   8篇
  2016年   17篇
  2015年   22篇
  2014年   29篇
  2013年   16篇
  2012年   38篇
  2011年   18篇
  2010年   30篇
  2009年   24篇
  2008年   24篇
  2007年   17篇
  2006年   31篇
  2005年   30篇
  2004年   22篇
  2003年   21篇
  2002年   23篇
  2001年   23篇
  2000年   15篇
  1999年   17篇
  1998年   7篇
  1996年   2篇
  1995年   5篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   11篇
  1989年   3篇
  1988年   5篇
  1987年   8篇
  1986年   2篇
  1985年   7篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1973年   1篇
  1971年   2篇
  1970年   1篇
  1967年   1篇
排序方式: 共有560条查询结果,搜索用时 31 毫秒
91.
92.
93.
Streptococcus pneumoniae is the most frequent cause of bacterial meningitis, leading to permanent neurological damage in 30% and lethal outcome in 25% of patients. The cholesterol-dependent cytolysin pneumolysin is a major virulence factor of S. pneumoniae . It produces rapid cell lysis at higher concentrations or apoptosis at lower concentrations. Here, we show that sublytic amounts of pneumolysin produce rapid bundling and increased acetylation of microtubules (signs of excessive microtubule stabilization) in various types of cells – neuroblastoma cells, fibroblasts and primary astrocytes. The bundling started perinuclearly and extended peripherally towards the membrane. The effect was not connected to pneumolysin's capacity to mediate calcium influx, macropore formation, apoptosis, or RhoA and Rac1 activation. Cellular cholesterol depletion and neutralization of the toxin by pre-incubation with cholesterol completely inhibited the microtubule phenotype. Pharmacological inhibition of Src-family kinases diminished microtubule bundling, suggesting their involvement in the process. The relevance of microtubule stabilization to meningitis was confirmed in an experimental pneumococcal meningitis animal model, where increased acetylation was observed. Live imaging experiments demonstrated a decrease in organelle motility after toxin challenge in a manner comparable to the microtubule-stabilizing agent taxol, thus proposing a possible pathogenic mechanism that might contribute to the CNS damage in pneumococcal meningitis.  相似文献   
94.
The impact of atmospheric N-deposition on succession from open sand to dry, lichen-rich, short grassland, and tall grass vegetation dominated by Carex arenaria was surveyed in 19 coastal dune sites along the Baltic Sea. Coastal dunes with acid or slightly calcareous sand reacted differently to atmospheric wet deposition of 5–8 kg N ha−1 y−1. Accelerated acidification, as well as increased growth of Carex and accumulation of organic matter, was observed only at acid sites with pHNaCl of the parent material below 6.0. At sites with slightly calcareous parent material, increased N-deposition had no effect. A trigger for grass encroachment seems to be high acidification in early successional stages to below pHNaCl 4.0. Metals like Al or Fe become freely available and may hamper intolerant species. At acid sites, N-mineralization increases with elevated N-deposition, which may further stimulate Carex arenaria. Due to high growth plasticity, efficient resource allocation and tolerance of high metal concentrations, C. arenaria is a superior competitor under these conditions and can start to dominate the dune system. Carex-dominated vegetation is species-poor. Even at the moderate N-loads in this study, foliose lichens, forbs and grasses were reduced in short grass vegetation at acid sites. Species indicating these first effects of atmospheric deposition on dry, lichen-rich, short grasslands are identified and recommendations for restoration of grass-encroached sites given.  相似文献   
95.
96.
The amyloid precursor protein (APP) is implied both in cell growth and differentiation and in neurodegenerative processes in Alzheimer disease. Regulated proteolysis of APP generates biologically active fragments such as the neuroprotective secreted ectodomain sAPPα and the neurotoxic β-amyloid peptide. Furthermore, it has been suggested that the intact transmembrane APP plays a signaling role, which might be important for both normal synaptic plasticity and neuronal dysfunction in dementia. To understand APP signaling, we tracked single molecules of APP using quantum dots and quantitated APP homodimerization using fluorescence lifetime imaging microscopy for the detection of Förster resonance energy transfer in living neuroblastoma cells. Using selective labeling with synthetic fluorophores, we show that the dimerization of APP is considerably higher at the plasma membrane than in intracellular membranes. Heparan sulfate significantly contributes to the almost complete dimerization of APP at the plasma membrane. Importantly, this technique for the first time structurally defines the initiation of APP signaling by binding of a relevant physiological extracellular ligand; our results indicate APP as receptor for neuroprotective sAPPα, as sAPPα binding disrupts APP dimers, and this disruption of APP dimers by sAPPα is necessary for the protection of neuroblastoma cells against starvation-induced cell death. Only cells expressing reversibly dimerized wild-type, but not covalently dimerized mutant APP are protected by sAPPα. These findings suggest a potentially beneficial effect of increasing sAPPα production or disrupting APP dimers for neuronal survival.The amyloid precursor protein (APP)4 is known both for its important role in the development and plasticity of the nervous system (16) and for its involvement in Alzheimer disease (AD) (7, 8). Despite intensive research efforts, the initial events that lead to the prevalent sporadic, i.e. non-familial, forms of AD are still unclear. Furthermore, although a higher gene dose of APP (9) or the presence of pathological APP mutations is sufficient to induce familial AD (for review, see Ref. 10), the exact pathological mechanism that is triggered by APP is still under debate.Some fragments of APP, such as the β-amyloid peptide (Aβ), are thought to contribute to synaptic dysfunction and neurotoxicity (11, 12). On the other hand, the α-secretase-derived extracellular fragment of APP (sAPPα), which is present at lower levels in AD patients than in controls (13), has been shown to be beneficial for memory function, to possess neuroprotective properties, and to counteract the effects of Aβ (1418).Signaling by transmembrane APP may directly contribute to neurodegeneration in AD (1924); however, the signal transduction pathway for transmembrane APP remains unknown, although several potential regulatory proteins, glycosaminoglycans, and metal ions are known to bind with high affinity to APP and sAPPα (25, 26). The most common form of signal transduction for single-pass transmembrane proteins is the ligand-induced perturbation of a monomer/dimer equilibrium. Indeed, the dimerization of transmembrane APP has been implied several times in the past. Several studies have investigated the effects of presumed dimer-breaking perturbations on biological read-outs, such as the production of Aβ (27, 28), but without directly measuring the APP aggregation state, or have investigated the aggregation state of APP subdomains, often reconstituted in cell-free systems (2732). Dimerization interfaces in both the extracellular and the transmembrane domain have been suggested.In the studies investigating the aggregation state of full-length APP, most of the employed methods, such as chemical cross-linking and co-immunoprecipitation, do not lend themselves readily to a rigorous quantitative analysis of the abundance of potentially instable dimers (31, 33), whereas in other cases the use of chimeras may have influenced the dimerization potential or precluded the search for a natural stimulus (23, 34). The only previously reported direct observation of APP dimerization by Förster resonance energy transfer (FRET) microscopy uses an assay in which the FRET efficiency varies with the level of overexpression (35). Therefore, a concentration-dependent FRET component due to nonspecific stochastic encounters cannot be excluded in this study.Most importantly, as none of the published procedures permitted the selective detection of APP dimers on the surface of live cells, where they would encounter ligands, they could not differentiate between subpopulations of APP. This may be one reason why no natural ligand of APP has ever been shown to signal via modulation of its monomer/dimer equilibrium.Another elusive goal is the identity of the receptor for neuroprotective sAPPα (3639). The ligand-dependent dimerization of sAPPα in solution (40) and its origination from transmembrane APP suggest that APP might serve as receptor for sAPPα, but this binding has never been experimentally shown.  相似文献   
97.

Background  

The broad range in growth observed in response to growth hormone (GH) treatment is mainly caused by individual variations in both GH secretion and GH sensitivity. Individual GH responsiveness can be estimated using evidence-based models that predict the response to GH treatment; however, these models can be improved. High-throughput proteomics techniques can be used to identify proteins that may potentially be used as variables in such models in order to improve their predictive ability. Previously we have reported that proteomic analyses can identify biomarkers that discriminate between short prepubertal children with idiopathic short stature (ISS) who show good or poor growth in response to GH treatment. In this study we used a pharmaco-proteomic approach to identify novel factors that correlate with the growth response to GH treatment in prepubertal children who are short due to GH deficiency or ISS. The study included 128 short prepubertal children receiving GH treatment, of whom 39 were GH-deficient and 89 had ISS. Serum protein expression profiles at study start and after 1 year of GH treatment were analyzed using SELDI-TOF. Cross-validated regression and random permutation analyses were performed to identify significant correlations between protein expression patterns and the 2-year growth response to GH treatment.  相似文献   
98.
A presacral mass can present a diagnostic dilemma for the surgical oncologist. Differential diagnoses include congenital causes such as teratoma or chordoma, neurological causes such as neurilemoma or neurofibroma or other malignancies such as lymphoma or sarcoma. Diagnosis usually requires imaging such as CT and MRI and tissue biopsy. We present an unusual cause of a presacral mass being extramedullary haematopoiesis, found incidentally in a 71 year old female. Extramedullary haematopoiesis is defined as the production of myeloid and erythroid elements outside of the bone-marrow. This diagnosis is extremely rare in the presacral area especially in a patient with no haematological abnormalities. A review of the literature is presented.  相似文献   
99.

Background

Macrophages are principal drivers of synovial inflammation in rheumatoid arthritis (RA), a prototype immune-mediated inflammatory disease. Conceivably, synovial macrophages are continuously replaced by circulating monocytes in RA. Animal studies from the 1960s suggested that macrophage replacement by monocytes is a slow process in chronic inflammatory lesions. Translation of these data into the human condition has been hampered by the lack of available techniques to analyze monocyte migration in man.

Methods/Principal Findings

We developed a technique that enabled us to analyze the migration of labelled autologous monocytes in RA patients using single photon emission computer tomography (SPECT). We isolated CD14+ monocytes by CliniMACS in 8 patients and labeled these with technetium-99m (99mTc-HMPAO). Monocytes were re-infused into the same patient. Using SPECT we calculated that a very small but specific fraction of 3.4×10−3 (0.95−5.1×10−3) % of re-infused monocytes migrated to the inflamed joints, being detectable within one hour after re-infusion.

Conclusions/Significance

The results indicate monocytes migrate continuously into the inflamed synovial tissue of RA patients, but at a slow macrophage-replacement rate. This suggests that the rapid decrease in synovial macrophages that occurs after antirheumatic treatment might rather be explained by an alteration in macrophage retention than in monocyte influx and that RA might be particularly sensitive to treatments targeting inflammatory cell retention.  相似文献   
100.
The synthesis of novel coumarins bearing on the lateral side chain in the 3-position an amine or a guanidine group is described. In vitro evaluation highlighted 14d which possesses a meta aniline side chain as a very potent THR inhibitor. Surprisingly, the introduction of a guanidine moiety always led to a decrease in THR inhibiting properties. We, thus, used docking experiments to rationalize the SAR in the series. This study showed the crucial role of a conserved water molecule in the specificity pocket of THR during docking simulation in order to explain the inactivity of guanidine derivatives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号