首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   917篇
  免费   84篇
  2023年   2篇
  2022年   15篇
  2021年   24篇
  2020年   12篇
  2019年   16篇
  2018年   24篇
  2017年   15篇
  2016年   41篇
  2015年   54篇
  2014年   63篇
  2013年   72篇
  2012年   91篇
  2011年   75篇
  2010年   50篇
  2009年   50篇
  2008年   60篇
  2007年   50篇
  2006年   47篇
  2005年   37篇
  2004年   40篇
  2003年   30篇
  2002年   30篇
  2001年   7篇
  2000年   3篇
  1999年   18篇
  1998年   8篇
  1997年   7篇
  1996年   8篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   5篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1973年   3篇
  1972年   3篇
排序方式: 共有1001条查询结果,搜索用时 31 毫秒
21.
22.
Elucidating the structure and biosynthesis of neuromelanin (NM) would be an important step towards understanding its putative role in the pathogenesis of Parkinson’s disease. A useful complement to studies aimed at unraveling the origin and properties of this essentially insoluble natural substance is the preparation of synthetic derivatives that resemble NM. With this aim in mind, water-soluble conjugates between dopamine-derived melanin and bovine serum albumin (BSA) were synthesized. Melanin–BSA adducts were prepared with both eumelanic oligomers obtained through the oxidative polymerization of dopamine and pheomelanic oligomers obtained under the same conditions from dopamine and cysteine. Iron ions were added during the synthesis to understand the interaction between the pigment and this metal ion, as the NM in neurons in several human brain regions contains significant amounts of iron. The structures of the conjugates were analyzed by 1H NMR spectroscopy and controlled proteolysis/MS experiments. The binding of iron(III) ions was evaluated by ICP analysis and EPR spectroscopy. The EPR signal from bound iron(III) indicated high-spin octahedral sites and, as also seen for NM, the signal is coupled to a signal from a radical associated with the melanic components of the conjugates. However, the intensity of the EPR signal from iron suggested a reduced fraction of the total iron, indicating that most of the iron is strongly coupled in clusters within the matrix. The amount of paramagnetic, mononuclear iron(III) was greater in the pheomelanin–BSA conjugates, suggesting that iron clustering is reduced in the sulfur-containing pigment. Thus, the melanin–BSA conjugates appear to be good models for the natural pigment.  相似文献   
23.
Natural polyphenol compounds are often good antioxidants, but they also cause damage to cells through more or less specific interactions with proteins. To distinguish antioxidant activity from cytotoxic effects we have tested four structurally related hydroxyflavones (baicalein, mosloflavone, negletein, and 5,6-dihydroxyflavone) at very low and physiologically relevant levels, using two different cell lines, L-6 myoblasts and THP-1 monocytes. Measurements using intracellular fluorescent probes and electron paramagnetic resonance spectroscopy in combination with cytotoxicity assays showed strong antioxidant activities for baicalein and 5,6-dihydroxyflavone at picomolar concentrations, while 10 nM partially protected monocytes against the strong oxidative stress induced by 200 µM cumene hydroperoxide. Wide range dose-dependence curves were introduced to characterize and distinguish the mechanism and targets of different flavone antioxidants, and identify cytotoxic effects which only became detectable at micromolar concentrations. Analysis of these dose-dependence curves made it possible to exclude a protein-mediated antioxidant response, as well as a mechanism based on the simple stoichiometric scavenging of radicals. The results demonstrate that these flavones do not act on the same radicals as the flavonol quercetin. Considering the normal concentrations of all the endogenous antioxidants in cells, the addition of picomolar or nanomolar levels of these flavones should not be expected to produce any detectable increase in the total cellular antioxidant capacity. The significant intracellular antioxidant activity observed with 1 pM baicalein means that it must be scavenging radicals that for some reason are not eliminated by the endogenous antioxidants. The strong antioxidant effects found suggest these flavones, as well as quercetin and similar polyphenolic antioxidants, at physiologically relevant concentrations act as redox mediators to enable endogenous antioxidants to reach and scavenge different pools of otherwise inaccessible radicals.  相似文献   
24.
25.
BackgroundCEA is associated with peri-operative risk of brain ischemia, due both to emboli production caused by manipulation of the plaque and to potentially noxious reduction of cerebral blood flow by carotid clamping. Mild hypothermia (34–35°C) is probably the most effective approach to protect brain from ischemic insult. It is therefore a substantial hypothesis that hypothermia lowers the risk of ischemic brain damage potentially associated with CEA. Purpose of the study is to test whether systemic endovascular cooling to a target of 34.5–35°C, initiated before and maintained during CEA, is feasible and safe.MethodsThe study was carried out in 7 consecutive patients referred to the Vascular Surgery Unit and judged eligible for CEA. Cooling was initiated 60–90 min before CEA, by endovascular approach (Zoll system). The target temperature was maintained during CEA, followed by passive, controlled rewarming (0.4°C/h). The whole procedure was carried out under anesthesia.ResultsAll the patients enrolled had no adverse events. Two patients exhibited a transient bradycardia (heart rate 30 beats/min). There were no significant differences in the clinical status, laboratory and physiological data measured before and after CEA.ConclusionsSystemic cooling to 34.5–35.0°C, initiated before and maintained during carotid clamping, is feasible and safe.

Trial Registration

ClinicalTrials.gov NCT02629653  相似文献   
26.
27.
28.
29.

Key message

Anatomical features of Pinus flexilis under warmer and drier conditions along an altitudinal transect revealed a shorter growing season and shifts in the timing of wood formation.

Abstract

Future climate change driven by greenhouse warming is expected to increase both frequency and severity of drought events and heat waves. Possible consequences for forest ecosystems include changes in foundation species and extended die-off phenomena. We investigated tree growth under the set of biotic and abiotic conditions, and their interactions, that are expected in a drier and warmer world using mountain observatories designed to capture elevation gradients in the Great Basin of North America. Stem cambial activity, wood anatomy, and radial growth of limber pine (Pinus flexilis) were examined at two different elevations using automated dendrometers and repeated histological microcores in 2013–2014. Mean annual temperature was 3.7° cooler at the higher site, which received 170 mm year?1 of precipitation more than the lower site. Mean air temperature thresholds for xylogenesis computed using logistic regression were 7.7 and 12.0 °C at the higher and lower site, respectively. No differences in the onset date of cambial activity were found under such naturally contrasted conditions, with the global change analog provided by the lower site. Growing season was shortened by increasing drought stress at the lower site, thereby reducing xylem production. Stem expansion was only detectable by automated dendrometers at the higher site. Using elevation to simulate climatic changes and their realized ecosystem feedbacks, it was possible to express tree responses in terms of xylem phenology and anatomical adaptations.
  相似文献   
30.
The decline in skeletal muscle mass and strength occurring in aging, referred as sarcopenia, is the result of many factors including an imbalance between protein synthesis and degradation, changes in metabolic/hormonal status, and in circulating levels of inflammatory mediators. Thus, factors that increase muscle mass and promote anabolic pathways might be of therapeutic benefit to counteract sarcopenia. Among these, the insulin‐like growth factor‐1 (IGF‐1) has been implicated in many anabolic pathways in skeletal muscle. IGF‐1 exists in different isoforms that might exert different role in skeletal muscle. Here we study the effects of two full propeptides IGF‐1Ea and IGF‐1Eb in skeletal muscle, with the aim to define whether and through which mechanisms their overexpression impacts muscle aging. We report that only IGF‐1Ea expression promotes a pronounced hypertrophic phenotype in young mice, which is maintained in aged mice. Nevertheless, examination of aged transgenic mice revealed that the local expression of either IGF‐1Ea or IGF‐1Eb transgenes was protective against age‐related loss of muscle mass and force. At molecular level, both isoforms activate the autophagy/lysosome system, normally altered during aging, and increase PGC1‐α expression, modulating mitochondrial function, ROS detoxification, and the basal inflammatory state occurring at old age. Moreover, morphological integrity of neuromuscular junctions was maintained and preserved in both MLC/IGF‐1Ea and MLC/IGF‐1Eb mice during aging. These data suggest that IGF‐1 is a promising therapeutic agent in staving off advancing muscle weakness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号