首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   942篇
  免费   79篇
  2024年   2篇
  2023年   4篇
  2022年   7篇
  2021年   22篇
  2020年   7篇
  2019年   7篇
  2018年   24篇
  2017年   30篇
  2016年   36篇
  2015年   58篇
  2014年   44篇
  2013年   70篇
  2012年   74篇
  2011年   64篇
  2010年   54篇
  2009年   42篇
  2008年   72篇
  2007年   73篇
  2006年   57篇
  2005年   59篇
  2004年   50篇
  2003年   45篇
  2002年   49篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   6篇
  1997年   4篇
  1996年   8篇
  1995年   4篇
  1994年   10篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1974年   1篇
  1968年   1篇
排序方式: 共有1021条查询结果,搜索用时 15 毫秒
151.
Thrombin (THR) plays a key role in the brain under physiological and pathological conditions. Several of the biological activities of thrombin have been shown to be mainly driven through activation of protease-activated receptor-1 (PAR-1)-type thrombin receptor. Here we have studied the effect of THR and PAR-1-activating peptide (PAR1-AP), SFLLRN, on cytokine-induced expression of inducible nitric oxide (iNOS), a prominent marker of astroglial activation using the rat C6 glioma cells. In this cell line, THR (1-10 U/mL) and PAR1-AP (1-100 microM) induced a significant concentration-dependent increase both of IFN-gamma- (250 U/mL) or TNF-alpha- (500 U/mL) induced NO release. The observed increase of NO production was related to an enhancement of iNOS expression as measured in cell lysates prepared from different treatments by using SDS-PAGE followed by western blot analysis. The effect of THR, but not that of PAR1-AP, was significantly inhibited by hirulog(TM) (60 microg/mL), a specific and stochiometric THR inhibitor or by cathepsin-G (40 mU/mL), an inhibitor of PAR-1. In conclusion our data suggest a role for THR through activation of PAR-1 in the induction of astroglial iNOS, and further support the hypothesis that THR may function as an important pathophysiological modulator of the inflammatory response.  相似文献   
152.
153.
To investigate the role of microsomal epoxide hydrolase (mEH) polymorphisms in the aetiology of lung cancer and to assess the interaction between mEH polymorphisms and smoking, we performed a meta-analysis of seven published studies, which included 2078 cases and 3081 controls, and a pooled analysis of eight studies (four published and four unpublished at that time) with a total of 986 cases and 1633 controls. The combined metaanalysis odds ratios (ORs) were 0.98 (95% confidence interval [CI] = 0.72-1.35) for polymorphism at amino acid 113 in exon 3 (His/His versus Tyr/Tyr genotype) and 1.00 (95% CI= 0.71-1.41) for polymorphism at amino acid 139 in exon 4 (Arg/Arg versus His/ His genotype). In the pooled analysis, we observed a significant decrease in lung cancer risk (OR = 0.70, 95% CI = 0.51-0.96) for exon 3 His/His genotype after adjustment for age, sex, smoking and centre. The protective effect of exon 3 polymorphism seems stronger for adenocarcinoma of the lung than for other histological types. The OR for high predicted mEH activity, compared with low activity, was 1.54 (95% CI = 0.77-3.07) in the meta analysis and 1.18 (95% CI = 0.92-1.52) in the pooled analysis. We did not find a consistent modification of the carcinogenic effect of smoking according to mEH polymorphism, although the risk of lung cancer decreased among never smokers with high mEH activity and among heavy smokers with the exon 3 His/His genotype. In conclusion, this study suggests a possible effect of mEH polymorphisms at exon 3 in modulating lung cancer. If present, this effect may vary among different populations, possibly because of interaction with genetic or environmental factors.  相似文献   
154.
One of the major hurdles in liver gene and cell therapy is availability of ex vivo-expanded hepatocytes. Pluripotent stem cells are an attractive alternative. Here, we show that hepatocyte precursors can be isolated from male germline cell-derived pluripotent stem cells (GPSCs) using the hepatoblast marker, Liv2, and induced to differentiate into hepatocytes in vitro. These cells expressed hepatic-specific genes and were functional as demonstrated by their ability to secrete albumin and produce urea. When transplanted in the liver parenchyma of partially hepatectomised mice, Liv2-sorted cells showed regional and heterogeneous engraftment in the injected lobe. Moreover, approximately 50% of Y chromosome-positive, GPSC-derived cells were found in the female livers, in the region of engraftment, even one month after cell injection. This is the first study showing that Liv2-sorted GPSCs-derived hepatocytes can undergo long lasting engraftment in the mouse liver. Thus, GPSCs might offer promise for regenerative medicine.  相似文献   
155.
156.
157.
Defects in stress response are main determinants of cellular senescence and organism aging. In fibroblasts from patients affected by Hutchinson–Gilford progeria, a severe LMNA‐linked syndrome associated with bone resorption, cardiovascular disorders, and premature aging, we found altered modulation of CDKN1A, encoding p21, upon oxidative stress induction, and accumulation of senescence markers during stress recovery. In this context, we unraveled a dynamic interaction of lamin A/C with HDAC2, an histone deacetylase that regulates CDKN1A expression. In control skin fibroblasts, lamin A/C is part of a protein complex including HDAC2 and its histone substrates; protein interaction is reduced at the onset of DNA damage response and recovered after completion of DNA repair. This interplay parallels modulation of p21 expression and global histone acetylation, and it is disrupted by LMNAmutations leading to progeroid phenotypes. In fact, HGPS cells show impaired lamin A/C‐HDAC2 interplay and accumulation of p21 upon stress recovery. Collectively, these results link altered physical interaction between lamin A/C and HDAC2 to cellular and organism aging. The lamin A/C‐HDAC2 complex may be a novel therapeutic target to slow down progression of progeria symptoms.  相似文献   
158.
Over the last years, many studies reported on the antioxidant effects of ferulic acid (FA) in preclinical models of dementia through the activation of the heme oxygenase/biliverdin reductase (HO/BVR) system. However, only a few studies evaluated whether FA could improve neurological function under milder conditions, such as psychological stress. The aim of this study was to investigate the effects of FA (150 mg/kg intraperitoneal route) on cognitive function in male Wistar rats exposed to emotional arousal. Animals were randomly assigned to two experimental groups, namely not habituated or habituated to the experimental context, and the novel object recognition test was used to evaluate their cognitive performance. The administration of FA significantly increased long-term retention memory in not habituated rats. Ferulic acid increased the expression of HO-1 in the hippocampus and frontal cortex of not habituated rats only, whereas HO-2 resulted differently modulated in these cognitive brain areas. No significant effects on either HO-1 or HO-2 or BVR were observed in the cerebellum of both habituated and not habituated rats. Ferulic acid activated the stress axis in not habituated rats, as shown by the increase in hypothalamic corticotrophin-releasing hormone levels. Pre-treatment with Sn-protoporphyrin-IX [0.25 μmol/kg, intracerebroventricular route (i.c.v.)], a well-known inhibitor of HO activity through which carbon monoxide (CO) and biliverdin (BV) are generated, abolished the FA-induced improvement of cognitive performance only in not habituated rats, suggesting a role for HO-derived by-products. The CO-donor tricarbonyldichlororuthenium (II) (30 nmol/kg i.c.v.) mimicked the FA-related improvement of cognitive skills only in not habituated rats, whereas BV did not have any effect in any group. In conclusion, these results set the stage for subsequent studies on the neuropharmacological action of FA under conditions of psychological stress.  相似文献   
159.

Background

It is unclear to what extent pre-clinical studies in genetically homogeneous animal models of amyotrophic lateral sclerosis (ALS), an invariably fatal neurodegenerative disorder, can be informative of human pathology. The disease modifying effects in animal models of most therapeutic compounds have not been reproduced in patients. To advance therapeutics in ALS, we need easily accessible disease biomarkers which can discriminate across the phenotypic variants observed in ALS patients and can bridge animal and human pathology. Peripheral blood mononuclear cells alterations reflect the rate of progression of the disease representing an ideal biological substrate for biomarkers discovery.

Methods

We have applied TMTcalibrator?, a novel tissue-enhanced bio fluid mass spectrometry technique, to study the plasma proteome in ALS, using peripheral blood mononuclear cells as tissue calibrator. We have tested slow and fast progressing SOD1G93A mouse models of ALS at a pre-symptomatic and symptomatic stage in parallel with fast and slow progressing ALS patients at an early and late stage of the disease. Immunoassays were used to retest the expression of relevant protein candidates.

Results

The biological features differentiating fast from slow progressing mouse model plasma proteomes were different from those identified in human pathology, with only processes encompassing membrane trafficking with translocation of GLUT4, innate immunity, acute phase response and cytoskeleton organization showing enrichment in both species. Biological processes associated with senescence, RNA processing, cell stress and metabolism, major histocompatibility complex-II linked immune-reactivity and apoptosis (early stage) were enriched specifically in fast progressing ALS patients. Immunodetection confirmed regulation of the immunosenescence markers Galectin-3, Integrin beta 3 and Transforming growth factor beta-1 in plasma from pre-symptomatic and symptomatic transgenic animals while Apolipoprotein E differential plasma expression provided a good separation between fast and slow progressing ALS patients.

Conclusions

These findings implicate immunosenescence and metabolism as novel targets for biomarkers and therapeutic discovery and suggest immunomodulation as an early intervention. The variance observed in the plasma proteomes may depend on different biological patterns of disease progression in human and animal model.
  相似文献   
160.
Loss-of-function mutations in the SIL1 gene are linked to Marinesco-Sjögren syndrome (MSS), a rare multisystem disease of infancy characterized by cerebellar and skeletal muscle degeneration. SIL1 is a ubiquitous adenine nucleotide exchange factor for the endoplasmic reticulum (ER) chaperone BiP. The complexity of mechanisms by which loss of SIL1 causes MSS is not yet fully understood. We used HeLa cells to test the hypothesis that impaired protein folding in the ER due to loss of SIL1 could affect secretory trafficking, impairing the transport of cargoes essential for the function of MSS vulnerable cells. Immunofluorescence and ultrastructural analysis of SIL1-knocked-down cells detected ER chaperone aggregation, enlargement of the Golgi complex, increased autophagic vacuoles, and mitochondrial swelling. SIL1-interefered cells also had delayed ER-to-plasma membrane transport with retention of Na+/K+-ATPase and procollagen-I in the ER and Golgi, and increased apoptosis. The PERK pathway of the unfolded protein response was activated in SIL1-interfered cells, and the PERK inhibitor GSK2606414 attenuated the morphological and functional alterations of the secretory pathway, and significantly reduced cell death. These results indicate that loss of SIL1 is associated with alterations of secretory transport, and suggest that inhibiting PERK signalling may alleviate the cellular pathology of SIL1-related MSS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号