首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2404篇
  免费   217篇
  2023年   6篇
  2022年   8篇
  2021年   40篇
  2020年   16篇
  2019年   23篇
  2018年   50篇
  2017年   55篇
  2016年   70篇
  2015年   119篇
  2014年   100篇
  2013年   181篇
  2012年   166篇
  2011年   153篇
  2010年   121篇
  2009年   93篇
  2008年   136篇
  2007年   137篇
  2006年   110篇
  2005年   131篇
  2004年   111篇
  2003年   95篇
  2002年   95篇
  2001年   43篇
  2000年   44篇
  1999年   40篇
  1998年   26篇
  1997年   33篇
  1996年   37篇
  1995年   24篇
  1994年   26篇
  1993年   22篇
  1992年   35篇
  1991年   32篇
  1990年   25篇
  1989年   20篇
  1988年   17篇
  1987年   16篇
  1986年   24篇
  1985年   16篇
  1984年   10篇
  1983年   9篇
  1982年   9篇
  1980年   5篇
  1979年   11篇
  1977年   10篇
  1976年   7篇
  1975年   9篇
  1974年   6篇
  1969年   6篇
  1968年   9篇
排序方式: 共有2621条查询结果,搜索用时 31 毫秒
91.
External beam radiotherapy (EBRT) is frequently used in the management of prostate cancer (PCa) as definitive, postoperative, or salvage local treatment. Although EBRT plays a central role in the management of PCa, complications remain a troubling by-product. Several studies have demonstrated an association between radiotherapy and elevated risk of acute and late toxicities. A secondary malignancy induced by initial therapy represents one of the most serious complications related to definitive cancer treatment. The radiation-related secondary primary malignancy risk increases with increasing survival time. Transitional cell carcinoma of the bladder is the most frequent secondary primary malignancy occurring after radiotherapy and is described as more aggressive; it may be diagnosed later because some radiation oncologists believe that the hematuria that occurs after prostate EBRT is normal. Some patients treated for localized PCa will subsequently develop invasive bladder cancer requiring surgical intervention. Patients with PCa treated with EBRT should be monitored closely for the presence of bladder cancer.Key words: Bladder cancer, Prostate cancer, Radiotherapy, External beam radiotherapyThe phenomenon of radiation-inducing the carcinogenesis has been well described in literature for decades. The correlation between ionizing radiation and DNA damage has been discussed in several studies.14 Most of these studies evaluated the growth of solid tumors in a large population exposed to moderate to heavy doses of radiation, such as factory workers, patients exposed to a large number of diagnostic radiographic studies, and survivors of atomic and nuclear explosions. 1 The casual effects of radiation exposure with subsequent mutagenesis are quite clear, shown both in vivo and in vitro.2 Previous radiotherapy (RT) for prostate cancer (PCa) may play an important role in the development of secondary primary bladder cancer. This is a fairly uncommon event but a very real entity, of which both urologists and radiation oncologists need to be aware.  相似文献   
92.
93.
Background aimsFirst-trimester chorionic villi (CV) are an attractive source of human mesenchymal stromal cells (hMSC) for possible applications in cellular therapy and regenerative medicine. Human MSC from CV were monitored for genetic stability in long-term cultures.MethodsWe set up a good manufacturing practice cryopreservation procedure for small amounts of native CV samples. After isolation, hMSC were in vitro cultured and analyzed for biological end points. Genome stability at different passages of expansion was explored by karyotype, genome-wide array-comparative genomic hybridization and microsatellite genotyping.ResultsGrowth curve analysis revealed a high proliferative potential of CV-derived cells. Immunophenotyping showed expression of typical MSC markers and absence of hematopoietic markers. Analysis of multilineage potential demonstrated efficient differentiation into adipocytes, osteocytes, chondrocytes and induction of neuro-glial commitment. In angiogenic experiments, differentiation in endothelial cells was detected by in vitro Matrigel assay after vascular endothelial growth factor stimulation. Data obtained from karyotyping, array-comparative genomic hybridization and microsatellite genotyping comparing early with late DNA passages did not show any genomic variation at least up to passage 10. Aneuploid clones appeared in four of 14 cases at latest passages, immediately before culture growth arrest.ConclusionsOur findings indicate that hCV-MSC are genetically stable in long-term cultures at least up to passage 10 and that it is possible to achieve clinically relevant amounts of hCV-MSC even after few stages of expansion. Genome abnormalities at higher passages can occasionally occur and are always associated with spontaneous growth arrest. Under these circumstances, hCV-MSC could be suitable for therapeutic purposes.  相似文献   
94.
Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes, thus protecting their stability and integrity. They play important roles in DNA replication and repair and are central to our understanding of aging and cancer development. In rapidly dividing cells, telomere length is maintained by the activity of telomerase. About 400 TLM (telomere length maintenance) genes have been identified in yeast, as participants of an intricate homeostasis network that keeps telomere length constant. Two papers have recently shown that despite this extremely complex control, telomere length can be manipulated by external stimuli. These results have profound implications for our understanding of cellular homeostatic systems in general and of telomere length maintenance in particular. In addition, they point to the possibility of developing aging and cancer therapies based on telomere length manipulation.  相似文献   
95.
It has been suggested that oxidative stress may play a role in the pathogenesis of Autism Spectrum Disorders (ASD), but the literature reports somewhat contradictory results. To further investigate the issue, we evaluated a high number of peripheral oxidative stress parameters, and some related issues such as erythrocyte membrane functional features and lipid composition. Twenty-one autistic children (Au) aged 5 to 12 years, were gender and age-matched with 20 typically developing children (TD). Erythrocyte thiobarbituric acid reactive substances, urinary isoprostane and hexanoyl-lysine adduct levels were elevated in Au, thus confirming the occurrence of an imbalance of the redox status of Au, whilst other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma radical absorbance capacity and carbonyl groups, erythrocyte superoxide dismutase and catalase activities) were unchanged. A very significant reduction of Na+/K+-ATPase activity (−66%, p<0.0001), a reduction of erythrocyte membrane fluidity and alteration in erythrocyte fatty acid membrane profile (increase in monounsaturated fatty acids, decrease in EPA and DHA-ω3 with a consequent increase in ω6/ω3 ratio) were found in Au compared to TD, without change in membrane sialic acid content. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity. Oxidative stress and erythrocyte membrane alterations may play a role in the pathogenesis of ASD and prompt the development of palliative therapeutic protocols. Moreover, the marked decrease in NKA could be potentially utilized as a peripheral biomarker of ASD.  相似文献   
96.
This study assessed the immunomodulatory effects in previously treated KRAS-mutant metastatic colorectal cancer patients participating in a phase II multicenter, open-label clinical trial receiving lenalidomide alone or lenalidomide plus cetuximab. The main findings show the T cell immunostimulatory properties of lenalidomide as the drug induced a decrease in the percentage CD45RA+ naïve T cells 3-fold while increasing the percentage HLA-DR+ activated T helper cells and percentage total CD45RO+ CD8+ memory T cytotoxic cells, 2.6- and 2.1-fold respectively (p<0.0001). In addition, lenalidomide decreased the percentage of circulating CD19+ B cells 2.6-fold (p<0.0001). Lenalidomide increased a modest, yet significant, 1.4-fold change in the percentage of circulating natural killer cells. Our findings indicate that lenalidomide significantly activates T cells, suggestive of an immunotherapeutic role for this drug in settings of maintenance therapy and tumor immunity. Furthermore, reported for the first time is the effect of lenalidomide in combination with cetuximab on T cell function, including increases in circulating naïve and central memory T cells. In summary, lenalidomide and cetuximab have significant effects on circulating immune cells in patients with colorectal carcinoma.

Trial Registration

ClinicalTrials.gov NCT01032291  相似文献   
97.

Background

Carboxyethylpyrrole (CEP) adducts are oxidative modifications derived from docosahexaenoate-containing lipids that are elevated in ocular tissues and plasma in age-related macular degeneration (AMD) and in rodents exposed to intense light. The goal of this study was to determine whether light-induced CEP adducts and autoantibodies are modulated by pretreatment with AL-8309A under conditions that prevent photo-oxidative damage of rat retina. AL-8309A is a serotonin 5-HT1A receptor agonist.

Methods

Albino rats were dark adapted prior to blue light exposure. Control rats were maintained in normal cyclic light. Rats were injected subcutaneously 3x with 10 mg/kg AL-8309A (2 days, 1 day and 0 hours) before light exposure for 6 h (3.1 mW/cm2, λ=450 nm). Animals were sacrificed immediately following light exposure and eyes, retinas and plasma were collected. CEP adducts and autoantibodies were quantified by Western analysis or ELISA.

Results

ANOVA supported significant differences in mean amounts of CEP adducts and autoantibodies among the light + vehicle, light + drug and dark control groups from both retina and plasma. Light-induced CEP adducts in retina were reduced ~20% following pretreatment with AL-8309A (n = 62 rats, p = 0.006) and retinal CEP immunoreactivity was less intense by immunohistochemistry. Plasma levels of light-induced CEP adducts were reduced at least 30% (n = 15 rats, p = 0.004) by drug pretreatment. Following drug treatment, average CEP autoantibody titer in light exposed rats (n = 22) was unchanged from dark control levels, and ~20% (p = 0.046) lower than in vehicle-treated rats.

Conclusions

Light-induced CEP adducts in rat retina and plasma were significantly decreased by pretreatment with AL-8309A. These results are consistent with and extend previous studies showing AL-8309A reduces light-induced retinal lesions in rats and support CEP biomarkers as possible tools for monitoring the efficacy of select therapeutics.  相似文献   
98.
Although recent preclinical and clinical studies have demonstrated that recombinant human relaxin (rhRLX) may have important therapeutic potential in acute heart failure and chronic kidney diseases, the effects of acute rhRLX administration against renal ischaemia/reperfusion (I/R) injury have never been investigated. Using a rat model of 1‐hr bilateral renal artery occlusion followed by 6‐hr reperfusion, we investigated the effects of rhRLX (5 μg/Kg i.v.) given both at the beginning and after 3 hrs of reperfusion. Acute rhRLX administration attenuated the functional renal injury (increase in serum urea and creatinine), glomerular dysfunction (decrease in creatinine clearance) and tubular dysfunction (increase in urinary excretion of N‐acetyl‐β‐glucosaminidase) evoked by renal I/R. These beneficial effects were accompanied by a significant reduction in local lipid peroxidation, free radical‐induced DNA damage and increase in the expression/activity of the endogenous antioxidant enzymes Mn‐ and CuZn‐superoxide dismutases (SOD). Furthermore, rhRLX administration attenuated the increase in leucocyte activation, as suggested by inhibition of myeloperoxidase activity, intercellular‐adhesion‐molecule‐1 expression, interleukin (IL)‐1β, IL‐18 and tumour necrosis factor‐α production as well as increase in IL‐10 production. Interestingly, the reduced oxidative stress status and neutrophil activation here reported were associated with rhRLX‐induced activation of endothelial nitric oxide synthase and up‐regulation of inducible nitric oxide synthase, possibly secondary to activation of Akt and the extracellular signal‐regulated protein kinase (ERK) 1/2, respectively. Thus, we report herein that rhRLX protects the kidney against I/R injury by a mechanism that involves changes in nitric oxide signalling pathway.  相似文献   
99.
1,5-Diphenyl pyrroles were previously identified as a class of compounds endowed with high in vitro efficacy against M. tuberculosis. To improve the physical chemical properties and drug-like parameters of this class of compounds, a medicinal chemistry effort was undertaken. By selecting the optimal substitution patterns for the phenyl rings at N1 and C5 and by replacing the thiomorpholine moiety with a morpholine one, a new series of compounds was produced. The replacement of the sulfur with oxygen gave compounds with lower lipophilicity and improved in vitro microsomal stability. Moreover, since the parent compound of this family has been shown to target MmpL3, mycobacterial mutants resistant to two compounds have been isolated and characterized by sequencing the mmpL3 gene; all the mutants showed point mutations in this gene. The best compound identified to date was progressed to dose-response studies in an acute murine TB infection model. The resulting ED99 of 49 mg/Kg is within the range of commonly employed tuberculosis drugs, demonstrating the potential of this chemical series. The in vitro and in vivo target validation evidence presented here adds further weight to MmpL3 as a druggable target of interest for anti-tubercular drug discovery.  相似文献   
100.
The cell cycle is a sequence of biochemical events that are controlled by complex but robust molecular machinery. This enables cells to achieve accurate self-reproduction under a broad range of different conditions. Environmental changes are transmitted by molecular signalling networks, which coordinate their action with the cell cycle. The cell cycle process and its responses to environmental stresses arise from intertwined nonlinear interactions among large numbers of simpler components. Yet, understanding of how these pieces fit together into a coherent whole requires a systems biology approach. Here, we present a novel mathematical model that describes the influence of osmotic stress on the entire cell cycle of S. cerevisiae for the first time. Our model incorporates all recently known and several proposed interactions between the osmotic stress response pathway and the cell cycle. This model unveils the mechanisms that emerge as a consequence of the interaction between the cell cycle and stress response networks. Furthermore, it characterises the role of individual components. Moreover, it predicts different phenotypical responses for cells depending on the phase of cells at the onset of the stress. The key predictions of the model are: (i) exposure of cells to osmotic stress during the late S and the early G2/M phase can induce DNA re-replication before cell division occurs, (ii) cells stressed at the late G2/M phase display accelerated exit from mitosis and arrest in the next cell cycle, (iii) osmotic stress delays the G1-to-S and G2-to-M transitions in a dose dependent manner, whereas it accelerates the M-to-G1 transition independently of the stress dose and (iv) the Hog MAPK network compensates the role of the MEN network during cell division of MEN mutant cells. These model predictions are supported by independent experiments in S. cerevisiae and, moreover, have recently been observed in other eukaryotes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号