首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1149篇
  免费   140篇
  2022年   12篇
  2021年   26篇
  2020年   20篇
  2019年   16篇
  2018年   23篇
  2017年   19篇
  2016年   25篇
  2015年   45篇
  2014年   50篇
  2013年   56篇
  2012年   79篇
  2011年   72篇
  2010年   46篇
  2009年   39篇
  2008年   46篇
  2007年   50篇
  2006年   53篇
  2005年   39篇
  2004年   53篇
  2003年   44篇
  2002年   33篇
  2001年   22篇
  2000年   16篇
  1999年   18篇
  1998年   14篇
  1997年   12篇
  1996年   10篇
  1992年   11篇
  1991年   20篇
  1990年   13篇
  1989年   17篇
  1988年   8篇
  1987年   11篇
  1986年   10篇
  1985年   13篇
  1984年   8篇
  1983年   9篇
  1982年   10篇
  1981年   10篇
  1980年   11篇
  1979年   13篇
  1978年   19篇
  1977年   14篇
  1976年   12篇
  1975年   18篇
  1974年   8篇
  1973年   13篇
  1969年   7篇
  1968年   7篇
  1965年   7篇
排序方式: 共有1289条查询结果,搜索用时 109 毫秒
71.
The purpose of the present study was to investigate the effect of aluminum on gap junctional intercellular communication (GJIC) in cultured astrocytes. In the CNS the extracellular environment and metabolic status of neurons is dependent upon astrocytes, which are known to exhibit GJIC. This cell-to-cell communication provides a cytoplasmic continuity between adjacent cells, allowing exchange of diverse ions, second messengers, and metabolites. To study the effects of aluminum intoxication on GJIC in cultured glial cells, astroglial cell cultures obtained from fetal rat brains were exposed to aluminum lactate for 2-6 weeks. To demonstrate the metabolic coupling of neighboring cells, the technique of microinjection of the gap junction permeable substance neurobiotin was performed. Whereas in controls intensive GJIC was observed by dye transfer of neurobiotin from the microinjected cell into the adjacent astrocytes, aluminum treatment significantly impaired this cellular communication. As aluminum is known to affect cytoskeletal elements, additional investigations into the organization of intermediate filaments (glial fibrillary acid protein, GFAP) and microfilaments in control astrocytes and subsequent aluminum exposure were performed with the aid of fluorescence microscopy and rapid-freeze, deep-etch electron microscopy. Aluminum exposure led to an aggregation of GFAP-positive filaments near to the cell nucleus, accompanied by a destruction of the actin cytoskeleton, especially close to the cell membrane. Ultrastructurally these data could be verified as prominent areas without actin filaments contacting the cell membrane detectable in aluminum-treated astrocytes. Immunohistochemical staining of Cx43 revealed an impaired trafficking of this connexin into the cell prolongations following aluminum treatment, although electron-microscopic data revealed that gap junctions between adjacent astrocytes were still present after aluminum incubation for 24 days. In conclusion, in cultured astrocytes the morphological integrity of microfilaments and the intermediate filament network seem to be fundamental for the translocation of connexins from Golgi complex into the cellular prolongation to exhibit proper and extensive cellular communication through gap junctions.  相似文献   
72.
73.
The human angiotensin II type 1 receptor (hAT(1)) was photolabeled with a high-affinity radiolabeled photoreactive analogue of AngII, (125)I-[Sar(1), Val(5), p-Benzoyl-L-phenylalanine(8)]AngII ((125)I-[Sar(1),Bpa(8)]AngII). Chemical cleavage with CNBr produced a 7 kDa fragment (285-334) of the C-terminal portion of the hAT(1). Manual Edman radiosequencing of photolabeled, per-acetylated, and CNBr-fragmented receptor showed that ligand incorporation occurred through Phe(293) and Asn(294) within the seventh transmembrane domain of the hAT(1). Receptor mutants with Met introduced at the presumed contact residues, F293M and N294M, were photolabeled and then digested with CNBr. SDS-PAGE analysis of those digested mutant receptors confirmed the contact positions 293 and 294 through ligand release induced by CNBr digestion. Additional receptor mutants with Met residues introduced into the N- and C-terminal proximity of those residues 293 and 294 of the hAT(1) produced, upon photolabeling and CNBr digestion, fragmentation patterns compatible only with the above contact residues. These data indicate that the C-terminal residue of AngII interacts with residues 293 and 294 of the seventh transmembrane domain of the human AT(1) receptor. Taking into account a second receptor-ligand contact at the second extracellular loop and residue 3 of AngII (Boucard, A. A., Wilkes, B. C., Laporte, S. A., Escher, E., Guillemette, G., and Leduc, R. (2000) Biochemistry 39, 9662-70) the Ang II molecule must adopt an extended structure in the AngII binding pocket.  相似文献   
74.
Herbaspirillum seropedicae strains mutated in the nifX or orf1 genes showed 90% or 50% reduction in nitrogenase activity under low levels of iron or molybdenum respectively. Mutations in nifX or orf1 genes did not affect nif gene expression since a nifH::lacZ fusion was fully active in both mutants. nifX and the contiguous gene orf1 are essential for maximum nitrogen fixation under iron limitation and are probably involved in synthesis of nitrogenase iron or iron-molybdenum clusters.  相似文献   
75.
76.
77.
78.
Laser capture microdissection was combined with reverse phase protein lysate arrays to quantitatively analyze the ratios of mitochondrial encoded cytochrome c oxidase subunits to nuclear encoded cytochrome c oxidase subunits, and to correlate the ratios with malignant progression in human prostate tissue specimens. Cytochrome c oxidase subunits I-III comprise the catalytic core of the enzyme and are all synthesized from mitochondrial DNA. The remaining subunits (IV-VIII) are synthesized from cellular nuclear DNA. A significant (P < 0.001, 30/30 prostate cases) shift in the relative concentrations of nuclear encoded cytochrome c oxidase subunits IV, Vb, and VIc compared to mitochondrial encoded cytochrome c oxidase subunits I and II was noted during the progression of prostate cancer from normal epithelium through premalignant lesions to invasive carcinoma. Significantly, this shift was discovered to begin even in the premalignant stage. Reverse phase protein lysate array-based observations were corroborated with immunohistochemistry, and extended to a few human carcinomas in addition to prostate. This analysis points to a role for nuclear DNA encoded mitochondrial proteins in carcinogenesis; underscoring their potential as targets for therapy while highlighting the need for full characterization of the mitochondrial proteome.  相似文献   
79.
The original article to which this Comment refers was published in Bioelectromagnetics 23:450–454 Bioelectromagnetics (2002) 23(5) 450–454  相似文献   
80.
Enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) are closely related pathogens. During infection, EPEC and EHEC use a type III secretion system (TTSS) to translocate effector proteins into the infected cells and thereby modify specific host functions. These include transient filopodium formation which is Cdc42-dependent. Filopodia formation is followed by assembly of actin pedestals, the process enhanced by inhibition of Cdc42. We discovered that orf 18 of the enterocyte effacement locus encodes a new effector, which we termed EspH. We show that EspH is translocated efficiently into the infected cells by the TTSS and localizes beneath the EPEC microcolonies. Inactivation of espH resulted in enhanced formation of filopodia and attenuated the pedestals formation. Furthermore, overexpression of EspH resulted in strong repression of filopodium formation and heightened pedestal formation. We also demonstrate that overexpression of EspH by EHEC induces marked elongation of the typically flat pedestals. Similar pedestal elongation was seen upon infection of COS cells overexpressing EspH. EspH transiently expressed by the COS cells was localized to the membrane and disrupted the actin cytoskeletal structure. Our findings indicate that EspH is a modulator of the host actin cytoskeleton structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号