首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2058篇
  免费   273篇
  2021年   37篇
  2020年   24篇
  2019年   20篇
  2018年   34篇
  2017年   25篇
  2016年   44篇
  2015年   64篇
  2014年   91篇
  2013年   108篇
  2012年   120篇
  2011年   112篇
  2010年   65篇
  2009年   62篇
  2008年   78篇
  2007年   74篇
  2006年   86篇
  2005年   71篇
  2004年   80篇
  2003年   67篇
  2002年   62篇
  2001年   54篇
  2000年   43篇
  1999年   46篇
  1998年   30篇
  1997年   31篇
  1996年   21篇
  1994年   24篇
  1993年   19篇
  1992年   32篇
  1991年   36篇
  1990年   25篇
  1989年   31篇
  1988年   20篇
  1987年   26篇
  1986年   23篇
  1985年   20篇
  1984年   26篇
  1982年   21篇
  1979年   20篇
  1978年   29篇
  1977年   24篇
  1976年   20篇
  1975年   27篇
  1974年   16篇
  1973年   28篇
  1972年   19篇
  1971年   33篇
  1970年   19篇
  1969年   23篇
  1968年   17篇
排序方式: 共有2331条查询结果,搜索用时 15 毫秒
131.
A spectroscopic study of glutathione (GSH) and glutathione disulfide (GSSG) has been performed using Fourier-transformed infrared absorption and Raman scattering in order to pinpoint the sites of complexation of these two species with water and particularly with H2O2. Molecules of GSH and GSSG were studied in KBr pellets, and in aqueous solutions of H2O, D2O, and H2O with H2O2 (1 mol L(-1)) to characterize the specific influence of the solvent molecules. A time-resolved Raman study was performed for GSH/H2O2, in aqueous solution at 1:1 molar ratio in order to observe the formation of GSSG and to discuss the mechanism of this redox reaction.  相似文献   
132.
133.
134.
Essential role for ADAM19 in cardiovascular morphogenesis   总被引:6,自引:0,他引:6       下载免费PDF全文
Congenital heart disease is the most common form of human birth defects, yet much remains to be learned about its underlying causes. Here we report that mice lacking functional ADAM19 (mnemonic for a disintegrin and metalloprotease 19) exhibit severe defects in cardiac morphogenesis, including a ventricular septal defect (VSD), abnormal formation of the aortic and pulmonic valves, leading to valvular stenosis, and abnormalities of the cardiac vasculature. During mouse development, ADAM19 is highly expressed in the conotruncus and the endocardial cushion, structures that give rise to the affected heart valves and the membranous ventricular septum. ADAM19 is also highly expressed in osteoblast-like cells in the bone, yet it does not appear to be essential for bone growth and skeletal development. Most adam19(-/-) animals die perinatally, likely as a result of their cardiac defects. These findings raise the possibility that mutations in ADAM19 may contribute to human congenital heart valve and septal defects.  相似文献   
135.
Proteomics is more than just generating lists of proteins that increase or decrease in expression as a cause or consequence of pathology. The goal should be to characterize the information flow through the intercellular protein circuitry that communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. The nature of this information can be a cause, or a consequence, of disease and toxicity-based processes. Serum proteomic pattern diagnostics is a new type of proteomic platform in which patterns of proteomic signatures from high dimensional mass spectrometry data are used as a diagnostic classifier. This approach has recently shown tremendous promise in the detection of early-stage cancers. The biomarkers found by SELDI-TOF-based pattern recognition analysis are mostly low molecular weight fragments produced at the specific tumor microenvironment.  相似文献   
136.
Recently we found that electrophysiological (EP) heterogeneities between subepicardial and midmyocardial cells can form a substrate for reentrant ventricular arrhythmias. However, cell-to-cell coupling through gap junctions is expected to attenuate transmural heterogeneities between cell types spanning the ventricular wall. Because connexin43 (Cx43) is the principal ventricular gap junction protein, we hypothesized that transmural EP heterogeneities are in part produced by heterogeneous Cx43 expression across the ventricular wall. The left ventricles of eight dogs were sectioned to expose the transmural surface. To determine whether heterogeneous Cx43 expression influenced EP function, high-resolution transmural optical mapping of the arterially perfused canine wedge preparation was used to measure transmural conduction velocity (thetaTM), dV/dt(max), transmural space constant (lambdaTM), and transmural gradients of action potential duration (APD). Relative Cx43 expression, quantified by confocal immunofluorescence, was significantly lower (by 24 +/- 17%; P < 0.05) in subepicardial compared with deeper layers. Importantly, reduced subepicardial Cx43 was associated with transmural heterogeneities of EP function evidenced by selectively reduced subepicardial thetaTM (by 18 +/- 9%; P < 0.05) compared with deeper layers. In subepicardial regions, dV/dt(max) was fastest (by 19 +/- 15%) and lambdaTM was smallest (by 18.1 +/- 2%), which suggests that conduction slowing was attributable to localized uncoupling rather than reduced excitability. The maximum transmural APD gradients occurred in the same regions where Cx43 expression was lowest; this suggests that Cx43 expression patterns served to maintain APD gradients across the transmural wall. These data demonstrate that heterogeneous Cx43 expression is closely associated with functionally significant EP heterogeneities across the transmural wall. Therefore, Cx43 expression patterns can potentially contribute to arrhythmic substrates that are dependent on transmural electrophysiological heterogeneities.  相似文献   
137.
Measurement of carbon dioxide levels has been employed to follow cellular metabolic reactions for quite some time. By radio-labeling substrate molecules and evaluating the radioactivity levels of the carbon dioxide released, insight into metabolic pathways can be gleaned. Currently, no carbon dioxide capturing device is available that can be used with large volume cell monolayers growing under standard conditions within a regular commercially available culture flask. In this note we describe a simple device for collecting radio-labeled carbon dioxide from a standard culture flask. The device is independent of the culture flask, but can be attached for metabolic measurements allowing cells to be grown under standard conditions prior to study. The presented design permits convenient transfer of the device between flasks without contaminating or disturbing cells growing within the flasks. Data are presented demonstrating the reproducibility of measurements made with multiple devices with different substrate concentrations and varying periods of time, ranging up to 3 h.  相似文献   
138.
Parkinson's disease (PD) is a prevalent age-related motor dysfunction resulting from the hyperactivity of the indirect striatal pathway, which is controlled in an antagonistic manner by inhibitory dopamine D2 and facilitatory adenosine A(2A) receptors. Thus, dopamine precursors like l-DOPA are the standard therapy and A(2A) antagonists are now tested as anti-parkinsonians. Increased free radicals levels occur on aging and are proposed to be a contributing factor for PD. We now tested if free radicals affected A(2A) and D2 receptors in striatal membranes of young adult (2 months) and old (24 months) rats. The A(2A) receptor antagonist [3H]SCH 58261 bound to striatal membranes with a KD of 0.9 nM and a Bmax of 953 fmol/mg protein in young rats and with a KD of 0.8 nM and a Bmax of 725 fmol/mg protein in aged rats (24% decrease). The D2 receptor antagonist [3H]raclopride bound to striatal membranes with a KD of 4.0 nM and a Bmax of 598 fmol/mg protein in young rats and with a KD of 4.3 nM and a Bmax of 368 fmol/mg protein in aged rats (38% decrease). Exposure of striatal membranes to a free radical generation system (2 mM FeSO4 and 4 mM ascorbate) caused a similar decrease of [3H]SCH 58261 (35%) and [3H]raclopride (37%) binding in young adult rats but caused a greater decrease of [3H]SCH 58261 (49%) than of [3H]raclopride (20%) binding in aged rats. Thus, in aged rats, there is an unbalance of A(2A)/D2 receptor density favouring A(2A) receptors, which is restored on exposure to free radicals. This supports the hypothesis that the effectiveness of A(2A) receptor antagonists as anti-parkinsonians, demonstrated in young adult animals, may not be affected by a modified A(2A)/D2 receptor density in aged individuals suffering from exposure to increased free radical levels, as occurs in PD.  相似文献   
139.
Calcium pumps of plasma membrane and cell interior   总被引:1,自引:0,他引:1  
Calcium entering the cell from the outside or from intracellular organelles eventually must be returned to the extracellular milieu or to intracellular storage organelles. The two major systems capable of pumping Ca2+ against its large concentration gradient out of the cell or into the sarco/endoplasmatic reticulum are the plasma membrane Ca2+ ATPases (PMCAs) and the sarco/endoplasmic reticulum Ca2+ ATPases (SERCAs), respectively. In mammals, multigene families code for these Ca2+ pumps and additional isoform subtypes are generated via alternative splicing. PMCA and SERCA isoforms show developmental-, tissue- and cell type-specific patterns of expression. Different PMCA and SERCA isoforms are characterized by different regulatory and kinetic properties that likely are optimized for the distinct functional tasks fulfilled by each pump in setting resting cytosolic or intra-organellar Ca2+ levels, and in shaping intracellular Ca2+ signals with spatial and temporal resolution. The loss or malfunction of specific Ca2+ pump isoforms is associated with defects such as deafness, ataxia or heart failure. Understanding the involvement of different Ca2+ pump isoforms in the pathogenesis of disease allows their identification as therapeutic targets for the development of selective strategies to prevent or combat the progression of these disorders.  相似文献   
140.
Protein tyrosine phosphorylation is a major regulator of bone metabolism. Tyrosine phosphatases participate in regulating phosphorylation, but roles of specific phosphatases in bone metabolism are largely unknown. We demonstrate that young (<12 weeks) female mice lacking tyrosine phosphatase epsilon (PTPepsilon) exhibit increased trabecular bone mass due to cell-specific defects in osteoclast function. These defects are manifested in vivo as reduced association of osteoclasts with bone and as reduced serum concentration of C-terminal collagen telopeptides, specific products of osteoclast-mediated bone degradation. Osteoclast-like cells are generated readily from PTPepsilon-deficient bone-marrow precursors. However, cultures of these cells contain few mature, polarized cells and perform poorly in bone resorption assays in vitro. Podosomes, structures by which osteoclasts adhere to matrix, are disorganized and tend to form large clusters in these cells, suggesting that lack of PTPepsilon adversely affects podosomal arrangement in the final stages of osteoclast polarization. The gender and age specificities of the bone phenotype suggest that it is modulated by hormonal status, despite normal serum levels of estrogen and progesterone in affected mice. Stimulation of bone resorption by RANKL and, surprisingly, Src activity and Pyk2 phosphorylation are normal in PTPepsilon-deficient osteoclasts, indicating that loss of PTPepsilon does not cause widespread disruption of these signaling pathways. These results establish PTPepsilon as a phosphatase required for optimal structure, subcellular organization, and function of osteoclasts in vivo and in vitro.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号