首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   419篇
  免费   23篇
  国内免费   4篇
  2024年   1篇
  2023年   15篇
  2022年   34篇
  2021年   45篇
  2020年   23篇
  2019年   23篇
  2018年   28篇
  2017年   10篇
  2016年   18篇
  2015年   25篇
  2014年   16篇
  2013年   31篇
  2012年   24篇
  2011年   31篇
  2010年   8篇
  2009年   10篇
  2008年   11篇
  2007年   13篇
  2006年   7篇
  2005年   9篇
  2004年   10篇
  2003年   7篇
  2002年   10篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1995年   6篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1978年   2篇
  1977年   3篇
  1975年   1篇
  1971年   1篇
  1958年   2篇
  1957年   2篇
  1954年   1篇
  1951年   1篇
  1949年   1篇
排序方式: 共有446条查询结果,搜索用时 15 毫秒
91.
Among the recent line of technological innovations, nanotechnology takes a promising position in agriculture and food production. Nanotechnology permits definite advances in agricultural research, such as reproductive science and technology. This investigation is interested in studying the in vitro effect of carbon nanotubes (CNTs) on callus, embryogenesis, embryo germination and elongation as well as rooting stage of date palm. Carbon nanotubes concentrations were investigated as 0.0, 0.05 and 0.1 mg/l. Results showed that CNTs affect all stages of micropropagation of date palm. Callus fresh weight showed the optimum value at 0.05 mg/l. In embryogenesis stage, CNTs decreased the number of embryos compared with the control while, increased number of germinated embryos and root number. Carbon nanotubes gave a significant enhancement for shoot length and leaf number in elongation stage. Similarly, it enhanced root number, root length, plantlet length and hairy roots. Chemical analysis as chlorophyll a, b, carotenoids, flavonoids, antioxidant enzymes and nutrients concentration and uptake were determined.  相似文献   
92.
Abstract

HCV NS5B polymerase has been one of the most attractive targets for developing new drugs for HCV infection and many drugs were successfully developed, but all of them were designed for targeting Hepatitis C Virus genotype 1 (HCV GT1). Hepatitis C virus genotype 4a (HCV GT4a) dominant in Egypt has paid less attention. Here, we describe our protocol of virtual screening in identification of novel potential potent inhibitors for HCV NS5B polymerase of GT4a using homology modeling, protein–ligand interaction fingerprint (PLIF), docking, pharmacophore, and 3D CoMFA quantitative structure activity relationship (QSAR). Firstly, a high-quality 3D model of HCV NS5B polymerase of GT4a was constructed using crystal structure of HCV NS5B polymerase of GT1 (PDB ID: 3hkw) as a template. Then, both the model and the template were simulated to compare conformational stability. PLIF was generated using five crystal structures of HCV NS5B (PDB ID: 4mia, 4mib, 4mk9, 4mka, and 4mkb), which revealed the most important residues and their interactions with the co-crystalized ligands. After that, a 3D pharmacophore model was developed from the generated PLIF data and then used as a screening filter for 17000328 drug-like zinc database compounds. 900 compounds passed the pharmacophore filter and entered the docking-based virtual screening stage. Finally, a 3D CoMFA QSAR was developed using 42 compounds as a training and 19 compounds as a test set. The 3D CoMFA QSAR was used to design and screen some potential inhibitors, these compounds were further evaluated by the docking stage. The highest ranked five hits from docking result (compounds (p1–p4) and compound q1) were selected for further analysis.

Communicated by Ramaswamy H. Sarma  相似文献   
93.
International Journal of Peptide Research and Therapeutics - Endophytic bacteria are able to produce unique bioactive compounds for various biotechnological applications. The intracellular and...  相似文献   
94.
This study provides a comprehensive computational procedure for the discovery of novel urea-based antineoplastic kinase inhibitors while focusing on diversification of both chemotype and selectivity pattern. It presents a systematic structural analysis of the different binding motifs of urea-based kinase inhibitors and the corresponding configurations of the kinase enzymes. The computational model depends on simultaneous application of two protocols. The first protocol applies multiple consecutive validated virtual screening filters including SMARTS, support vector-machine model (ROC = 0.98), Bayesian model (ROC = 0.86) and structure-based pharmacophore filters based on urea-based kinase inhibitors complexes retrieved from literature. This is followed by hits profiling against different extended electron distribution (XED) based field templates representing different kinase targets. The second protocol enables cancericidal activity verification by using the algorithm of feature trees (Ftrees) similarity searching against NCI database. Being a proof-of-concept study, this combined procedure was experimentally validated by its utilization in developing a novel series of urea-based derivatives of strong anticancer activity. This new series is based on 3-benzylbenzo[d]thiazol-2(3H)-one scaffold which has interesting chemical feasibility and wide diversification capability. Antineoplastic activity of this series was assayed in vitro against NCI 60 tumor-cell lines showing very strong inhibition of GI50 as low as 0.9 uM. Additionally, its mechanism was unleashed using KINEX™ protein kinase microarray-based small molecule inhibitor profiling platform and cell cycle analysis showing a peculiar selectivity pattern against Zap70, c-src, Mink1, csk and MeKK2 kinases. Interestingly, it showed activity on syk kinase confirming the recent studies finding of the high activity of diphenyl urea containing compounds against this kinase. Allover, the new series, which is based on a new kinase scaffold with interesting chemical diversification capabilities, showed that it exhibits its “emergent” properties by perturbing multiple unexplored kinase pathways.  相似文献   
95.
96.
A sensitive and green micellar spectrofluorimetric approach was applied for the simultaneous estimation of ivabradine hydrochloride (IVB) and felodipine (FLD) in the ng/ml concentration range. The approach depended on measuring the first derivative synchronous peak amplitude (1D) of both drugs at ∆λ = 60 nm in a Tween-80 micellar system. The method was rectilinear alongside the concentration ranges 0.02–0.4 μg/ml and 0.05–1.0 μg/ml at 269.5 nm and 378.5 nm for IVB and FLD, respectively. The proposed method was validated by following the International Council for Harmonization guidelines. The method was successfully applied without interference for laboratory-prepared synthetic mixtures, single pharmaceutical preparations, and within spiked biological fluids with acceptable percentage recoveries. A comparison of the performance of the suggested method with other methods, showed no discrepancy. The method’s ecofriendly property evaluated using three different tools, confirming an excellent green method.  相似文献   
97.
Two new series of furochromone and benzofuran derivatives were designed, synthesized and evaluated for their in vitro anticancer activity against MCF-7 and MDA231 breast cancer cell lines. Compounds 5, 6, 7, 9, 15a, 16, 17a and 18 exhibited the best antiproliferative activities with IC50 values ranging from 1.19 to 2.78?µM against MCF-7 superior to lapatinib as reference standard (IC50; 4.69?µM). Compounds 15a and 18 revealed significant cytotoxic activity against MCF-7 and MDA231, therefore their inhibitory potencies against p38α MAP kinase were evaluated. Remarkably they exhibited significant IC50 of 0.04?µM comparable to SB203580 (IC50; 0.50?µM) as a reference standard. These promising results of cytotoxic activity and significant inhibition of p38α MAP kinase, were confirmed by exploring the effect of benzofuran derivative (18) on the apoptotic induction and cell cycle progression of MCF-7 cell line. Compound 18 induced preG1 apoptosis and cell growth arrest at G2/M phase preventing the mitotic cycle. Moreover it activated the caspase-7 which executes apoptosis. Molecular docking study was carried out using GOLD program to predict the mode of binding interaction of the synthesized compounds into the target p38α MAPK. Additionally, the physicochemical properties and ADME parameters of compound 18 were examined in silico to investigate its drug-likeness.  相似文献   
98.
Hexokinase‐2 is overexpressed in several carcinomas including breast cancer to sustain energy for rapidly dividing cells and associates with chemoresistance. However, the impact of chemo drugs (alone or in combination) on hexokinase activity and autophagic cell death is unclear. In this report, we used an in vivo murine adenocarcinoma model to validate the effects of As2O3 and cisplatin on hexokinase activity and autophagic cancer cell death. We found that the two drugs inhibit hexokinase activity and induce autophagic marker, beclin 1 expression. Interestingly, combining As2O3 with cisplatin synergistically enhanced these effects and alleviated oxidative stress often encountered in As2O3 treatment. Altogether, our data provide direct evidence that inhibition of hexokinase activity and induction of autophagic cell death are mediating the antineoplastic effects of As2O3 and cisplatin. Our findings raise the potential of combining As2O3 with cisplatin as an approach to augment cisplatin‐induced cell death and combat cisplatin chemoresistance in cancer.  相似文献   
99.
Cyclooxygenase-2 (COX-2) and transforming growth factor-beta1 (TGF-beta1) were modulated in a variety of viral infections, but there is a paucity of data about their role in the pathologic process of cirrhosis and/or hepatocellular carcinoma (HCC) following chronic hepatitis C virus (HCV) infection. The material of the current study included 50 cases of chronic hepatitis C (CHC) without cirrhosis, 30 cases of CHC with cirrhosis, and 30 cases of HCC with HCV admitted to the Gastroenterology and Hepatology Department of Theodor Bilharz Research Institute, Giza, Egypt. Fifteen wedge liver biopsies, taken during laparoscopic cholecystectomy, were included in the study as normal controls. Laboratory investigations, serologic markers for viral hepatitis, and serum alpha fetoprotein levels (alpha-FP) were done for all cases of the study. Immunohistochemistry using primary antibodies against both factors revealed weak to faint immunoreactivity to COX-2 and TGF-beta1 in normal hepatic tissue (< 30% and < 50% of the cells, respectively). COX-2 expression was upregulated in patients with CHC with and without cirrhosis, yet 80% of positively stained cirrhotic cases showed marked staining intensity. Higher COX-2 expression was observed in well-differentiated HCC cases (80%) with marked staining intensity (75%) compared with advanced HCC tumors (P < .001). TGF-beta1 was expressed in the hepatocytes of all cases of CHC with and without cirrhosis as well as in 67% of HCC cases. Extensive cytoplasmic expression was detected in 52%, 93.3%, and 46.6% of CHC patients without cirrhosis, patients with cirrhosis, and patients with HCC, respectively. A positive correlation was observed between hepatic expression of COX-2 and TGF-beta1 (r = 0.67, P < .05); however, no correlation was detected between the latter and grade of HCC differentiation (r = 0.33, P > .05). CONCLUSION: These findings may suggest that TGF-beta1 plays a role in hepatic cell damage following HCV infection thus stressing the usefulness of this cytokine as a prognostic marker for liver cell injury. However, COX-2 is a predictive marker for malignant transformation and has a role in the early stages of hepatocarcinogenesis, but not in the advanced stages. The combined expression of both factors in HCV-related HCC suggests their synergistic action in the pathophysiology of hepatocarcinogenesis.  相似文献   
100.
In this article, we report on the alkaloid profile and dynamic of alkaloid content and diversity in two Narcissus plants at different stages of development. The alkaloid profile of the two Narcissus species was investigated by GC/MS and HPTLC. Fifty eight Amaryllidaceae alkaloids were detected, and 25 of them were identified in the different organs of N. tazetta and N. papyraceus. The alkaloid 3‐O‐methyl‐9‐O‐demethylmaritidine is tentatively identified here for the first time from the Amaryllidaceae family, and four alkaloids (tazettamide, sternbergine, 1‐O‐acetyllycorine, 2,11‐didehydro‐2‐dehydroxylycorine) are tentatively identified for the first time in the genus Narcissus. The different organs of the two species analyzed showed remarkable differences in their alkaloid pattern, type of biosynthesis, main alkaloid and number of alkaloids. Lycorine‐type alkaloids dominated the alkaloid, metabolism in N. papyraceus, while alkaloids of narciclasine‐, galanthamine‐ and homolycorine‐types were found only in the species N. tazetta L.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号