首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   15篇
  国内免费   3篇
  390篇
  2024年   1篇
  2023年   16篇
  2022年   34篇
  2021年   45篇
  2020年   23篇
  2019年   22篇
  2018年   26篇
  2017年   8篇
  2016年   15篇
  2015年   21篇
  2014年   14篇
  2013年   26篇
  2012年   23篇
  2011年   29篇
  2010年   8篇
  2009年   9篇
  2008年   9篇
  2007年   9篇
  2006年   6篇
  2005年   6篇
  2004年   8篇
  2003年   6篇
  2002年   9篇
  2001年   2篇
  2000年   1篇
  1997年   2篇
  1995年   5篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1982年   1篇
  1975年   1篇
排序方式: 共有390条查询结果,搜索用时 0 毫秒
71.
Molecular and Cellular Biochemistry - The era of induced pluripotent stem cells (iPSCs) was used as novel biotechnology to replace embryonic stem cells bypassing the ethical concerns and problems...  相似文献   
72.
The biotechnology of desert plants is a vast subject. The main applications in this broad field of study comprises of plant tissue culture, genetic engineering, molecular markers and others. Biotechnology applications have the potential to address biodiversity conservation as well as agricultural, medicinal, and environmental issues. There is a need to increase our knowledge of the genetic diversity through the use of molecular genetics and biotechnological approaches in desert plants in the Arabian Gulf region including those in the United Arab Emirates (UAE). This article provides a prospective research for the study of UAE desert plant diversity through DNA fingerprinting as well as understanding the mechanisms of both abiotic stress resistance (including salinity, drought and heat stresses) and biotic stress resistance (including disease and insect resistance). Special attention is given to the desert halophytes and their utilization to alleviate the salinity stress, which is one of the major challenges in agriculture. In addition, symbioses with microorganisms are thought to be hypothesized as important components of desert plant survival under stressful environmental conditions. Thus, factors shaping the diversity and functionality of plant microbiomes in desert ecosystems are also emphasized in this article. It is important to establish a critical mass for biotechnology research and applications while strengthening the channels for collaboration among research/academic institutions in the area of desert plant biotechnology.  相似文献   
73.
Mutations in the Park2 gene, encoding the E3 ubiquitin‐ligase parkin, are responsible for a familial form of Parkinson's disease (PD). Parkin‐mediated ubiquitination is critical for the efficient elimination of depolarized dysfunctional mitochondria by autophagy (mitophagy). As damaged mitochondria are a major source of toxic reactive oxygen species within the cell, this pathway is believed to be highly relevant to the pathogenesis of PD. Little is known about how parkin‐mediated ubiquitination is regulated during mitophagy or about the nature of the ubiquitin conjugates involved. We report here that USP8/UBPY, a deubiquitinating enzyme not previously implicated in mitochondrial quality control, is critical for parkin‐mediated mitophagy. USP8 preferentially removes non‐canonical K6‐linked ubiquitin chains from parkin, a process required for the efficient recruitment of parkin to depolarized mitochondria and for their subsequent elimination by mitophagy. This work uncovers a novel role for USP8‐mediated deubiquitination of K6‐linked ubiquitin conjugates from parkin in mitochondrial quality control.  相似文献   
74.
Outbreaks of Cyclospora cayetanensis infection have been linked to consumption of food and water contaminated by oocysts that can survive both physical and chemical disinfectants. Magnesium oxide (MgO) nanoparticles (NPs) can be potentially used in food as bactericides. In this study, C. cayetanensis pre- and post-sporulated oocysts were exposed to MgO NPs with different doses ranging from 1.25–25?mg/ml. With comparison to control, the antiprotozoal activity of MgO NPs was evaluated by identifying the median effective concentration dose (EC50), lethal concentration dose (LC90), microscopically changes on treated oocysts and rates of sporulation. Among pre- and post-sporulated oocysts, MgO NPs?≥?EC50 was observed after 24?h at concentrations 10 and 12.5?mg/ml, respectively, while?≥?LC90 was observed after 24?h, 48?h and 72?h at concentrations 15, 12.5 and 10?mg/ml, respectively. MgO NPs treated oocysts showed abnormal morphological changes such as an increase in size, wall injury, deposition of vacuolated homogenous particles in the cytoplasm, evacuation of oocyst's contents, and collapse. Sporocysts of treated oocysts were noticed to be peripherally shifted. Sporulation failure of treated oocysts achieved ≥90% after 24?h and 72?h of incubation with 15 and 12.5?mg/ml, respectively, while it was 10.1% among non-treated. All the differences were statistically significant. Our results demonstrated that MgO NPs has a significant anti-Cyclospora effect on both unsporulated and sporulated oocysts, especially considering that it could be biologically synthesized, that way it can be used safely as a preventive agent in food and water disinfectant treatment.  相似文献   
75.
Plasmonics - In this study, the effect of the nanosandwiched indium slab thickness (20–200 nm) on the performance of the Ga2S3/In/Ga2S3 interfaces is explored by means of X-ray...  相似文献   
76.
77.
78.
A series of [1]benzothieno[2,3-c]pyridines was synthesised. Most compounds were chosen by NCI-USA to evaluate their anticancer activity. Compounds 5a–c showed prominent growth inhibition against most cell lines. 5c was selected at five dose concentration levels. It exhibited potent broad-spectrum anticancer activity with a GI50 of 4 nM–37 µM. Cytotoxicity of 5a–c was further evaluated against prostate, renal, and breast cancer cell lines. 5c showed double and quadruple the activity of staurosporine and abiraterone, respectively, against the PC-3 cell line with IC50 2.08 µM. The possible mechanism of anti-prostate cancer was explored via measuring the CYP17 enzyme activity in mice prostate cancer models compared to abiraterone. The results revealed that 5c suppressed the CYP17 enzyme to 15.80 nM. Moreover, it was found to be equipotent to abiraterone in testosterone production. Cell cycle analysis and apoptosis were performed. Additionally, the ADME profile of compound 5c demonstrated both good oral bioavailability and metabolic stability.  相似文献   
79.
Nicaraven, a hydroxyl radical-specific scavenger has been demonstrated to attenuate radiation injury in hematopoietic stem cells with 5 Gy γ-ray exposures. We explored the effect and related mechanisms of nicaraven for protecting radiation injury induced by sequential exposures to a relatively lower dose γ-ray. C57BL/6 mice were given nicaraven or placebo within 30 min before exposure to 50 mGy γ-ray daily for 30 days in sequences (cumulative dose of 1.5 Gy). Mice were victimized 24 h after the last radiation exposure, and the number, function and oxidative stress of hematopoietic stem cells were quantitatively estimated. We also compared the gene expression in these purified stem cells from mice received nicaraven and placebo treatment. Nicaraven increased the number of c-kit+ stem/progenitor cells in bone marrow and peripheral blood, with a recovery rate around 60–90% of age-matched non-irradiated healthy mice. The potency of colony forming from hematopoietic stem/progenitor cells as indicator of function was completely protected with nicaraven treatment. Furthermore, nicaraven treatment changed the expression of many genes associated to DNA repair, inflammatory response, and immunomodulation in c-kit+ stem/progenitor cells. Nicaraven effectively protected against damages of hematopoietic stem/progenitor cells induced by sequential exposures to a relatively low dose radiation, via complex mechanisms.  相似文献   
80.
The global outbreak of the COVID-19 pandemic provokes scientists to make a prompt development of new effective therapeutic interventions for the battle against SARS-CoV-2. A new series of N-(5-nitrothiazol-2-yl)-carboxamido derivatives were designed and synthesised based on the structural optimisation principle of the SARS-CoV Mpro co-crystallized WR1 inhibitor. Notably, compound 3b achieved the most promising anti-SARS-CoV-2 activity with an IC50 value of 174.7 µg/mL. On the other hand, compounds 3a, 3b, and 3c showed very promising SARS-CoV-2 Mpro inhibitory effects with IC50 values of 4.67, 5.12, and 11.90 µg/mL, respectively. Compound 3b docking score was very promising (−6.94 kcal/mol) and its binding mode was nearly similar to that of WR1. Besides, the molecular dynamics (MD) simulations of compound 3b showed its great stability inside the binding pocket until around 40 ns. Finally, a very promising SAR was concluded to help to design more powerful SARS-CoV-2 Mpro inhibitors shortly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号