首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   23篇
  2023年   3篇
  2022年   12篇
  2021年   16篇
  2020年   4篇
  2019年   12篇
  2018年   3篇
  2017年   8篇
  2016年   15篇
  2015年   21篇
  2014年   17篇
  2013年   19篇
  2012年   22篇
  2011年   25篇
  2010年   13篇
  2009年   10篇
  2008年   15篇
  2007年   6篇
  2006年   8篇
  2005年   6篇
  2004年   11篇
  2003年   14篇
  2002年   10篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
排序方式: 共有287条查询结果,搜索用时 15 毫秒
101.
102.
The thiazolidinedione (TZD) class of Peroxisome proliferator‐activated receptor gamma agonists has restricted clinical use for diabetes mellitus due to fluid retention and potential cardiovascular risks. These side effects are attributed in part to direct salt‐retaining effect of TZDs at the renal collecting duct. A recent study from our group revealed that prolonged rosiglitazone (RGZ) treatment caused no Na+/H2O retention or up‐regulation of Na+ transport‐linked channels/transporters in experimental congestive heart failure (CHF) induced by surgical aorto‐caval fistula (ACF). The present study examines the effects of RGZ on renal and cardiac responses to atrial natriuretic peptide (ANP), Acetylcholine (Ach) and S‐Nitroso‐N‐acetylpenicillamine (SNAP‐NO donor). Furthermore, we assessed the impact of RGZ on gene expression related to the ANP signalling pathway in animals with ACF. Rats subjected to ACF (or sham) were treated with either RGZ (30 mg/kg/day) or vehicle for 4 weeks. Cardiac chambers pressures and volumes were assessed invasively via Miller catheter. Kidney excretory and renal hemodynamic in response to ANP, Ach and SNAP were examined. Renal clearance along with cyclic guanosine monophosphate (cGMP), gene expression of renal CHF‐related genes and ANP signalling in the kidney were determined. RGZ‐treated CHF rats exhibited significant improvement in the natriuretic responses to ANP infusion. This ‘sensitization’ to ANP was not associated with increases in neither urinary cGMP nor in vitro cGMP production. However, RGZ caused down‐regulation of several genes in the renal cortex (Ace, Nos3 and Npr1) and up‐regulation of ACE2, Agtrla, Mme and Cftr along down‐regulation of Avpr2, Npr1,2, Nos3 and Pde3 in the medulla. In conclusion, CHF+RGZ rats exhibited significant enhancement in the natriuretic responses to ANP infusion, which are known to be blunted in CHF. This ‘sensitization’ to ANP is independent of cGMP signalling, yet may involve post‐cGMP signalling target genes such as ACE2, CFTR and V2 receptor. The possibility that TZD treatment in uncomplicated CHF may be less detrimental than thought before deserves additional investigations.  相似文献   
103.
Dairy production is threatened by antibiotic resistant pathogens worldwide, and alternative solutions to treat mastitis are not available. The prevalence of antibiotic resistant strains is not well known in less developed countries. The prevalence of pathogenic bacteria and their resistance to 21 commercial antibiotics were studied in milk samples taken from 122 dairy cows suffering from the symptoms of mastitis in Egypt. The bacterial species were identified with molecular methods, and antibiotic resistance was studied with disc diffusion method. The prevalence of Streptococcus aureus, Escherichia coli and Pseudomonas aeruginosa were 30%, 17% and 3.5%, respectively. Most (90%) of the S. aureus strains showed resistance to penicillin whereas only 10% of the strains were resistant to oxacillin. Nearly half (40%) of E. coli strains showed resistance to streptomycin. Six P. aeruginosa strains showed resistance to several antibiotics, including ceftriaxone, enrofloxacin and levofloxacin. This points out that despite P. aeruginosa was not common, it should be followed up carefully. Potential biocontrol agents against antibiotic resistant mastitis bacteria were searched among 30 endophytic actinobacterial strains derived from wild medicinal plants. Three plants, namely Mentha longifolia, Malva parviflora and Pulicaria undulata were chosen for a more detailed study; their endophytic actinobacteria were used to prepare metabolic extracts. The crude metabolites of the actinobacteria were extracted with ethyl acetate. All metabolic extracts inhibited the growth of S. aureus, methicillin-resistant Staphylococcus aureus (MRSA), E. coli and P. aeruginosa in vitro. The 16S rRNA sequence analysis revealed that the most efficient actinobacterial strains were two Micromonospora sp. and one Actinobacteria bacterium. We conclude that the combination of the metabolites of several endophytic actinobacteria derived from several medicinal plants would be the most efficient against pathogens. Different metabolite cocktails should be studied further in order to develop novel biocontrol agents to treat antibiotic resistant mastitis bacteria in dairy cows.  相似文献   
104.
Experimental challenges associated with characterization of the membrane-bound form of talin have prevented us from understanding the molecular mechanism of its membrane-dependent integrin activation. Here, utilizing what we believe to be a novel membrane mimetic model, we present a reproducible model of membrane-bound talin observed across multiple independent simulations. We characterize both local and global membrane-induced structural transitions that successfully reconcile discrepancies between biochemical and structural studies and provide insight into how talin might modulate integrin function. Membrane binding of talin, captured in unbiased simulations, proceeds through three distinct steps: initial electrostatic recruitment of the F2 subdomain to anionic lipids via several basic residues; insertion of an initially buried, conserved hydrophobic anchor into the membrane; and association of the F3 subdomain with the membrane surface through a large, interdomain conformational change. These latter two steps, to our knowledge, have not been observed or described previously. Electrostatic analysis shows talin F2F3 to be highly polarized, with a highly positive underside, which we attribute to the initial electrostatic recruitment, and a negative top face, which can help orient the protein optimally with respect to the membrane, thereby reducing the number of unproductive membrane collision events.  相似文献   
105.
Omi/HtrA2 is a nuclear encoded mitochondrial serine protease with dual and opposite functions that depend entirely on its subcellular localization. During apoptosis, Omi/HtrA2 is released into the cytoplasm where it participates in cell death. While confined in the inter-membrane space of the mitochondria, Omi/HtrA2 has a pro-survival function that may involve the regulation of protein quality control (PQC) and mitochondrial homeostasis. Loss of Omi/HtrA2's protease activity causes the neuromuscular disorder of the mnd2 (motor neuron degeneration 2) mutant mice. These mice develop multiple defects including neurodegeneration with parkinsonian features. Loss of Omi/HtrA2 in non-neuronal tissues has also been shown to cause premature aging. The normal function of Omi/HtrA2 in the mitochondria and how its deregulation causes neurodegeneration or premature aging are unknown. Here we report that the mitochondrial Mulan E3 ubiquitin ligase is a specific substrate of Omi/HtrA2. During exposure to H2O2, Omi/HtrA2 degrades Mulan, and this regulation is lost in cells that carry the inactive protease. Furthermore, we show accumulation of Mulan protein in various tissues of mnd2 mice as well as in Omi/HtrA2(−/−) mouse embryonic fibroblasts (MEFs). This causes a significant decrease of mitofusin 2 (Mfn2) protein, and increased mitophagy. Our work describes a new stress-signaling pathway that is initiated in the mitochondria and involves the regulation of Mulan by Omi/HtrA2 protease. Deregulation of this pathway, as it occurs in mnd2 mutant mice, causes mitochondrial dysfunction and mitophagy, and could be responsible for the motor neuron disease and the premature aging phenotype observed in these animals.  相似文献   
106.
The hepatitis C virus (HCV), the main cause of morbidity and mortality, is endemic worldwide. HCV causes cirrhosis and other complications that often lead to death. HCV is most common in underdeveloped nations, with the highest prevalence rates in Egypt. Tumor suppressor gene (P53) induces the expression of apoptotic antigen-1 gene (APO-1) by binding to its promoter for mediating apoptosis; an important mechanism for limiting viral replication. This study aims at investigating the impact of P53 72 Arg/Pro and APO-1 − 670 A/G polymorphisms on HCV genotype 4a susceptibility. Two hundred and forty volunteers were enrolled in this study and divided into two major groups; 160 HCV infected patient group and 80 healthy control group. HCV patients were classified according to Metavir scoring system into two subgroups; 72 patients in F0/1-HCV subgroup (patients with no or mild fibrotic stages) and 38 patients in F3/4-HCV subgroup (patients with advanced fibrotic stages). Quantification of HCV-RNA by qRT-PCR and fibrotic scores as well as genotyping of HCV-RNA, P53 at 72 Arg/Pro, and APO-1 at − 670 A/G were performed for all subjects. It was resulted that F0/1-HCV patients have significant differences of P53 at 72 (Pro/Pro and Arg/Arg) genotypes and dominant/recessive genetic models as well as APO-1 − 670 A/A genotype and dominant genetic model as compared to F3/4-HCV patients. Moreover, HCV patients have significant differences of P53 at 72 (Pro/Pro) genotype and recessive genetic model as well as APO-1 − 670 A/A genotype and dominant genetic model as compared to those of healthy individuals. Finally, it was concluded that P53 rs 1042522 (Pro/Pro and Arg/Arg) genotypes and APO-1 rs 1800682 A/A genotype may be potentially used as sensitive genetic markers for HCV genotype 4a susceptibility.  相似文献   
107.
108.
This investigation involves the comparison of the diversity of understorey vegetation of four desert planted forests with the adjacent desert areas. Spatial and temporal variations in species composition and structure were compared, and alpha and beta diversities were compared for the field data collected from sampled sites. The diversity of native desert species decreased from 66% in desert areas to 44% of the total recorded plants inside the forests. Meanwhile, the percentage of agricultural weed species increased in forests to >twofold more than that recorded in desert areas. Plant communities in forest stands shared <50% of their species with adjacent vegetation in desert stands. The percentage of variation in species composition was >340% in some forests compared with the desert areas. Alpha diversity and β‐diversity were significantly higher in forest stands than in the desert. Spatial and temporal variations in species diversity were correlated with type of tree canopy and irrigation system. Planted forests had significant negative effects on the diversity of native desert shrubs and trees. Using flood irrigation and more spacing between trees might help in conserving the floristic diversity of desert shrubs and trees at the forest floor.  相似文献   
109.
110.
The goal of this work is to optimize production of bio-ethanol by fermentation through regulating yeast growth energy (YGE), and provide the mechanism of ethanol production from food-waste leachate (FWL) using yeast (S. cerevisiae) as inoculums to be predictable and controllable. The wide range of reduced sugar concentration (RSC) which is commonly administered from low (35 g per liter) to very high (100 g per liter) is responsible for costs increasing besides risks of FWL contamination and death of yeast cells. A mathematical model is presented to describe yeast growth energy (YGE) due to RSC doses along with predicting the amounts of ethanol yield by each dose to identify the optimum one. Simulations of the presented model showed that YGE, energy intake (EI), and their produced ethanol energy (PEE) are always balanced during fermentation process according to the law of conservation of energy. For a better fermentation rate in a continuous process and a large-scale production; YGE should be less than half of EI and more than its quarter (i.e. $ \frac{ 1}{ 4}{\text{EI}} \le {\text{YGE}} \le \frac{1}{2}{\text{EI}} $ ) which keeps the residual energy less than YGE to avoid risks of osmotic stresses or aging of cells allowing the survival of all yeast cells as long as possible to maximize ethanol production and decrease productivity costs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号