首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   26篇
  2023年   4篇
  2022年   13篇
  2021年   17篇
  2020年   5篇
  2019年   13篇
  2018年   5篇
  2017年   8篇
  2016年   15篇
  2015年   21篇
  2014年   19篇
  2013年   23篇
  2012年   25篇
  2011年   29篇
  2010年   15篇
  2009年   11篇
  2008年   17篇
  2007年   9篇
  2006年   10篇
  2005年   8篇
  2004年   14篇
  2003年   16篇
  2002年   11篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1976年   1篇
排序方式: 共有340条查询结果,搜索用时 15 毫秒
301.
Nitric oxide (NO) is known to be a messenger molecule that plays an important role in physiological and pathological conditions. It is synthesized by an enzyme called nitric oxide synthase (NOS). Inducible NOS (iNOS), one of the three isomers of NOS, has both protective and toxic properties. In this study, the role of NO has been evaluated by gastrointestinal symptoms induced by orlistat which is used in obesity treatment. Orlistat was given to Wistar rats with and without iNOS inhibition. The effects of orlistat and inhibition of NOS were studied. Glucose, urea, alanine transaminase (ALT), and gamma glutamil transpeptidase (GGT) were descreased after short- and long- term orlistat applications. Dexamethasone increased level of these enzymes. Cholesterol and triglyceride were increased in all experimental groups than the controls. This increment was more severe in animals received orlistat and dexamethasone together. Small intestinal tissue also were researched histologically and NADPH-diaphorase (NADPH-d) histochemistrically. Orlistat caused histological damages in brush border membranes, connective tissues of villi, and lymphocyte migration also increased. Dexamethasone treatment prevented these damages partially while orlistat increased the NOS distribution in the tissue sections. Dexamethasone, which is an iNOS inhibitor, decreased NADPH-d histochemistry. There was a similiar NOS distribution both in the control and orlistat+dexamethasone group. Hence, we concluded that long- term trials with orlistat and similar drugs are needed.  相似文献   
302.
Molecular dynamics simulations of proteins in lipid bilayers   总被引:1,自引:0,他引:1  
With recent advances in X-ray crystallography of membrane proteins promising many new high-resolution structures, molecular dynamics simulations will become increasingly valuable for understanding membrane protein function, as they can reveal the dynamic behavior concealed in the static structures. Dramatic increases in computational power, in synergy with more efficient computational methodologies, now allow us to carry out molecular dynamics simulations of any structurally known membrane protein in its native environment, covering timescales of up to 0.1 micros. At the frontiers of membrane protein simulations are ion channels, aquaporins, passive and active transporters, and bioenergetic proteins.  相似文献   
303.
Caspase-2 is one of the earliest identified caspases, but the mechanism of caspase-2-induced apoptosis remains unknown. We show here that caspase-2 engages the mitochondria-dependent apoptotic pathway by inducing the release of cytochrome c (Cyt c) and other mitochondrial apoptogenic factors into the cell cytoplasm. In support of these observations we found that Bcl-2 and Bcl-xL can block caspase-2- and CRADD (caspase and RIP adaptor with death domain)-induced cell death. Unlike caspase-8, which can process all known caspase zymogens directly, caspase-2 is completely inactive toward other caspase zymogens. However, like caspase-8, physiological levels of purified caspase-2 can cleave cytosolic Bid protein, which in turn can trigger the release of Cyt c from isolated mitochondria. Interestingly, caspase-2 can also induce directly the release of Cyt c, AIF (apoptosis-inducing factor), and Smac (second mitochondria-derived activator of caspases protein) from isolated mitochondria independent of Bid or other cytosolic factors. The caspase-2-released Cyt c is sufficient to activate the Apaf-caspase-9 apoptosome in vitro. In combination, our data suggest that caspase-2 is a direct effector of the mitochondrial apoptotic pathway.  相似文献   
304.
An essential, but poorly understood part of malaria transmission by mosquitoes is the development of the ookinetes into the sporozoite-producing oocysts on the mosquito midgut wall. For successful oocyst formation newly formed ookinetes in the midgut lumen must enter, traverse, and exit the midgut epithelium to reach the midgut basal lamina, processes collectively known as midgut invasion. After invasion ookinete-to-oocyst transition must occur, a process believed to require ookinete interactions with basal lamina components. Here, we report on a novel extracellular malaria protein expressed in ookinetes and young oocysts, named secreted ookinete adhesive protein (SOAP). The SOAP gene is highly conserved amongst Plasmodium species and appears to be unique to this genus. It encodes a predicted secreted and soluble protein with a modular structure composed of two unique cysteine-rich domains. Using the rodent malaria parasite Plasmodium berghei we show that SOAP is targeted to the micronemes and forms high molecular mass complexes via disulphide bonds. Moreover, SOAP interacts strongly with mosquito laminin in yeast-two-hybrid assays. Targeted disruption of the SOAP gene gives rise to ookinetes that are markedly impaired in their ability to invade the mosquito midgut and form oocysts. These results identify SOAP as a key molecule for ookinete-to-oocyst differentiation in mosquitoes.  相似文献   
305.
A screening of 22 DNA polymorphisms has been performed in western Mediterranean populations (Iberian Peninsula, Morocco, and Central Mediterranean Islands). The analyzed markers correspond to polymorphic sites in several candidate genes for cardiovascular disease including apolipopoteins and their receptors (APOA1, APOB, APOE, APOC1, APOC2, LPA, and LDLR), genes implied in the hemostasis regulation (Factor VII, alpha and beta-fibrinogen, alpha and beta platelet-integrin, tissue plasminogen activator, and plasminogen activator inhibitor-1), and the angiotensin converting enzyme gene. The results are presented of a partial analysis carried out in following population samples: 6 from the Iberian Peninsula, 2 from Morocco, and 3 from Central Islands. The degree of inter-population diversity was significant and consistent with data from other kind of genetic polymorphisms. The apportionment of the allele frequency variance supported a geographic structure into three main regions: Central Mediterranean Islands, the Iberia Peninsula and North Africa. The genetic distance pattern is compatible with a south-to-north North African influence in the Iberian Peninsula and a remarkable gene flow from sub-Saharan Africa into Morocco. Epidemiologically, North Africa is characterized by high frequencies of LPA PNR alleles with high number of repeats (protective for cardiovascular risk) and high frequencies of the APOE*E4 allele (risk factor) as compared with European populations.  相似文献   
306.
307.
Early intermediates of bacteriorhodopsin's photocycle were modeled by means of ab initio quantum mechanical/molecular mechanical and molecular dynamics simulations. The photoisomerization of the retinal chromophore and the formation of photoproducts corresponding to the early intermediates were simulated by molecular dynamics simulations. By means of the quantum mechanical/molecular mechanical method, the resulting structures were refined and the respective excitation energies were calculated. Two sequential intermediates were found with absorption maxima that exhibit red shifts from the resting state. The intermediates were therefore assigned to the K and KL states. In K, the conformation of the retinal chromophore is strongly deformed, and the N--H bond of the Schiff base points almost perpendicular to the membrane normal toward Asp-212. The strongly deformed conformation of the chromophore and weakened interaction of the Schiff base with the surrounding polar groups are the means by which the absorbed energy is stored. During the K-to-KL transition, the chromophore undergoes further conformational changes that result in the formation of a hydrogen bond between the N--H group of the Schiff base and Thr-89 as well as other rearrangements of the hydrogen-bond network in the vicinity of the Schiff base, which are suggested to play a key role in the proton transfer process in the later phase of the photocycle.  相似文献   
308.
In yeast, Tim50 along with Tim23 regulate translocation of presequence-containing proteins across the mitochondrial inner membrane. Here, we describe the identification and characterization of a novel human mitochondrial inner membrane protein homologous to the yeast Tim50. We demonstrate that human Tim50 possesses phosphatase activity and is present in a complex with human Tim23. Down-regulation of human Tim50 expression by RNA interference increases the sensitivity of human cell lines to death stimuli by accelerating the release of cytochrome c from the mitochondria. Furthermore, injection of Tim50-specific morpholino antisense oligonucleotides during early zebrafish embryonic development causes neurodegeneration, dysmorphic hearts, and reduced motility as a result of increased cell death. These observations indicate that loss of Tim50 in vertebrates causes mitochondrial membrane permeabilization and dysfunction followed by cytoplasmic release of cytochrome c along with other mitochondrial inducers of cell death. Thus Tim50 is important for both mitochondrial function and early neuronal development.  相似文献   
309.
Induction of the mitochondrial permeability transition has been proposed as an important contributor to cell loss in several neurological disorders, but the evidence that this change can develop in cells in the intact mature brain is largely indirect. In this study, we have tested whether an intrastriatal injection of N-methyl-D-aspartate results in increases in inner membrane permeability that can be detected from mitochondrial accumulation of metabolites of 3H-deoxyglucose previously taken up by brain cells. An increase in incorporation of deoxyglucose metabolites was found in mitochondria prepared from the striatum but not from cerebral cortex distant from the injection site. This change developed more than 8 h after treatment with N-methyl-D-aspartate and is consistent with the induction of the permeability transition as a late change in the progression to irreversible neuronal damage in response to this excitotoxic insult. At earlier times, the restricted permeability of the inner mitochondrial membrane was apparently preserved, at least sufficiently to prevent significant diffusion of metabolites between the cytoplasm and the matrix.  相似文献   
310.
Kandil FE  Grace MH 《Phytochemistry》2001,58(4):611-613
The aerial parts of the Egyptian herb Cornulaca monacantha have yielded two new galloyltannin analogs (named monacanthin A and monacanthin B) characterized by protoctechuoyl moiety at C-6, and also a new flavonol glycoside, quercetin-4'-O-beta-D-galactoside. The structures of the new compounds were established by conventional analytical methods and confirmed by spectral analyses. Two known flavonoids, luteolin-7-O-rhamnoside, luteolin-7-O-glucoside, and two known gallotannins, penta-O-galloyl-beta-D-glucose and 1,2,3,6-tetra-O-galloyl-beta-D-glucose were also isolated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号