首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   26篇
  2023年   4篇
  2022年   13篇
  2021年   17篇
  2020年   5篇
  2019年   13篇
  2018年   5篇
  2017年   8篇
  2016年   15篇
  2015年   21篇
  2014年   19篇
  2013年   23篇
  2012年   25篇
  2011年   29篇
  2010年   15篇
  2009年   11篇
  2008年   17篇
  2007年   9篇
  2006年   10篇
  2005年   8篇
  2004年   14篇
  2003年   16篇
  2002年   11篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1976年   1篇
排序方式: 共有340条查询结果,搜索用时 15 毫秒
241.
The mechanism of proton exclusion in aquaporin channels is elucidated through free energy calculations of the pathway of proton transport. The second generation multistate empirical valence bond (MS-EVB2) model was applied to simulate the interaction of an excess proton with the channel environment. Jarzynski's equality was employed for rapid convergence of the free energy profile. A barrier sufficiently high to block proton transport is located near the channel center at the NPA motif-a site involved in bi-orientational ordering of the embedded water-wire in absence of the excess proton. A second and lower barrier is observed at the selectivity filter near the periplasmic outlet where the channel is narrowest. This secondary barrier may be essential in filtering other large solutes and cations.  相似文献   
242.
BACKGROUND: The association between Helicobacter pylori infection and idiopathic thrombocytopenic purpura (ITP) has been reported widely. We investigated the prevalence of H. pylori infection, its virulence profile and the effectiveness of its eradication in patients with ITP. MATERIALS AND METHODS: Twenty patients with ITP, 20 with peptic ulcer (10 gastric ulcer (GU), 10 duodenal ulcer (DU)) and 20 with NUD were studied. The virulence profile of the strains was assessed by genotyping for cagA, vacA, iceA, and hpyIIIR/hrgA and by assaying for IL-8 and DNA fragmentation after incubation with AGS cells. Infected patients and two uninfected ITP patients received triple therapy and platelets were counted before and 1 month, 6 months, 1 year, and 2 years after eradication therapy. RESULTS: H. pylori infection was found in 17 ITP (85%), 20 ulcer (100%) and 13 NUD (65%) patients. Biopsies and strains were collected from five ITP, 20 ulcer and 13 NUD patients. The ITP patients had a pangastritis or corpus-predominant gastritis pattern. All H. pylori isolates, from ITP, ulcer and NUD patients, were cagA(+) and vacA s1/m1, and did not differ in levels of IL-8 induction or DNA fragmentation. Fifteen ITP (88%) and 17 ulcer (85%) patients had successful eradication of H. pylori. Ten of these 15 (67%) H. pylori-eradicated ITP patients had platelet recovery. There was no significant change in platelet count in the two ITP patients in whom eradication failed or in the two originally H. pylori-uninfected ITP patients, or in the treated ulcer patients. Age at onset of ITP was the main determinant of platelet recovery: 100% of patients diagnosed after the age of 60 recovered compared with only 22% of those diagnosed before 50. CONCLUSIONS: H. pylori-infected ITP patients have a corpus-predominant pattern of gastritis but the virulence profile of their strains does not differ from that of ulcer or NUD patients. Eradication of H. pylori infection is a good therapeutic option for some patients with chronic ITP, especially for those who develop ITP in older age.  相似文献   
243.
Interactive molecular dynamics, a new modeling tool for rapid investigation of the physical mechanisms of biological processes at the atomic level, is applied to study selectivity and regulation of the membrane channel protein GlpF and the enzyme glycerol kinase. These proteins facilitate the first two steps of Escherichia coli glycerol metabolism. Despite their different function and architecture the proteins are found to employ common mechanisms for substrate selectivity: an induced geometrical fit by structurally homologous binding sites and an induced rapid dipole moment reversal. Competition for hydrogen bonding sites with water in both proteins is critical for substrate motion. In glycerol kinase, it is shown that the proposed domain motion prevents competition with water, in turn regulating the binding of glycerol.  相似文献   
244.
Proteolytic activation of initiator procaspases is a crucial step in the cellular commitment to apoptosis. Alternative models have been postulated for the activation mechanism, namely the oligomerization or induced proximity model and the allosteric regulation model. While the former holds that procaspases become activated upon proper oligomerization by an adaptor protein, the latter states that the adaptor is an allosteric regulator for procaspases. The allosteric regulation model has been applied for the activation of procaspase-9 by apoptotic protease-activating factor (Apaf-1) in an oligomeric complex known as the apoptosome. Using approaches that allow for controlled oligomerization, we show here that aggregation of multiple procaspase-9 molecules can induce their activation independent of the apoptosome. Oligomerization-induced procaspase-9 activation, both within the apoptosome and in artificial systems, requires stable homophilic association of the protease domains, raising the possibility that the function of Apaf-1 is not only to oligomerize procaspase-9 but also to maintain the interaction of the caspase-9 protease domain after processing. In addition, we provide biochemical evidence that other apoptosis initiator caspases (caspase-2 and -10) as well as a procaspase involved in inflammation (murine caspase-11) are also activated by oligomerization. Thus, oligomerization of precursor molecules appears to be a general mechanism for the activation of both apoptosis initiator and inflammatory procaspases.  相似文献   
245.
Diffusion and partition of solutes in cartilage under static load   总被引:2,自引:0,他引:2  
We describe experimental apparatus, methodology and mathematical algorithms to measure diffusion and partition for typical small ionic solutes and inulin (a medium size solute) in statically loaded cartilage. The partition coefficient based on tissue water (K(H(2)O)) of Na(+) increased from 1.8 to 4.5 and for SO(4)(-2) decreased from 0.5 to 0.1, when the applied pressure was raised from zero to 22 atm K(H(2)O) of inulin decreased from 0.3 to 0.05, for an increase in pressure from zero to 11 atm. Our theoretical interpretation of the results is that the partition coefficient can be expressed as a function of fixed charge density (FCD) for both loaded and unloaded cartilage. The partition coefficient shows good agreement with the ideal Gibbs-Donnan equilibrium, particularly when FCD is based on extrafibrillar water (EFW). The diffusion coefficients, D also decreased with an increase in applied pressure; raising the pressure from 0 to 22 atm resulted in the following changes in the values of D: for Na(+) from 2.86 x 10(-6) to 1.51 x 10(-6) cm(2)/s, for SO(4)(-2) from 1.58 x 10(-6) to 7.5 x 10(-7) cm(2)/s, for leucine from 1.69 x 10(-6) to 8.30 x 10(-7) cm(2)/s and for inulin from 1.80 x 10(-7) to 3.30 x 10(-8) cm(2)/s. For the three small solutes (two charged and one neutral) the diffusion coefficient D is highly correlated with the fraction of fluid volume in the tissue. These experimental results show good agreement with the simple model of Mackie and Meares: hence solute charge does not affect the diffusion of small solutes under load. For inulin D & K show some agreement with a modified Ogston model based on two major components, viz., glycosaminoglycans (GAG) and core protein. We conclude that the changes in the partition and diffusion coefficients of small and medium size solutes in statically loaded cartilage can be interpreted as being due to the reduction in hydration and increase in FCD. The change in the latter affects the partition of small ionic solutes and the partition and diffusion of larger molecules. Our results throw light on the ionic environment of chondrocytes in loaded cartilage as well as on the transport of solutes through the matrix.  相似文献   
246.
To identify human proteins that bind to the Smac and caspase-9 binding pocket on the baculoviral inhibitor of apoptosis protein (IAP) repeat 3 (BIR3) domain of human XIAP, we used BIR3 as an affinity reagent, followed by elution with the BIR3 binding peptide AVPIA, microsequencing, and mass spectrometry. The mature serine protease Omi (also known as HtrA2) was identified as a mitochondrial direct BIR3-binding protein and a caspase activator. Like mature Smac (also known as Diablo), mature Omi contains a conserved IAP-binding motif (AVPS) at its N terminus, which is exposed after processing of its N-terminal mitochondrial targeting sequence upon import into the mitochondria. Mature Omi is released together with mature Smac from the mitochondria into the cytosol upon disruption of the outer mitochondrial membrane during apoptosis. Finally, mature Omi can induce apoptosis in human cells in a caspase-independent manner through its protease activity and in a caspase-dependent manner via its ability to disrupt caspase-IAP interaction. Our results provide clear evidence for the involvement of a mitochondrial serine protease in the apoptotic pathway, emphasizing the critical role of the mitochondria in cell death.  相似文献   
247.
Chemical and spectroscopic consequences of allosteric interactions for ligand binding to sipunculid (Phascolopsis gouldii) and brachiopod (Lingula reevii) hemerythrins (Hrs) have been investigated. Possible allosteric effectors for homotropic effects in sipunculid Hrs have been examined, but only reduction in ligand affinity is observed without cooperativity. In contrast to sipunculid Hr, L. reevii Hr binds O2 cooperatively in the pH range 7-8 and exhibits a Bohr effect. Spectroscopic comparisons of the sipunculid and brachiopod Hrs show no significant differences in the active site structures; therefore, modulation of oxygen affinity is attributable to effects linking the site to quaternary structural changes in the octamer. Oxygen equilibria can be fit with a conformational model incorporating a minimum of three states, tensed (T), relaxed (R), and an R-T hybrid. Resonance Raman spectra of L. reevii oxyHr show a shift in the peroxo stretching frequency when the pH is lowered from pH 7.7 (predominantly R oxyHr) to pH 6.3 (a mixture of R, T, and R-T hybrid), but P. gouldii Hr does not have a frequency shift under the same conditions. In contrast to hemoglobins, ligand binding to the deoxy and met forms is noncooperative for brachiopod (and sipunculid) Hrs. It is thus suggested that conformational changes in the protein are linked to the oxidation state change that accompanies oxygenation of the coupled binuclear iron site (deoxy [FeIIFeII]----oxy [FeIIIFeIII]). The total allosteric energy expended in oxygenation is about 1.4 kcal/mol, and such a shift is possible in the relaxed-tense conversion with relatively limited constraints of the iron coordination environment via the protein quaternary structure. The mechanism of cooperativity in the binuclear copper oxygen carrier hemocyanin is discussed in light of these results.  相似文献   
248.
p53 is a conformationally flexible sequence-specific DNA binding protein mutated in many human tumors. To understand why the mutant p53 proteins associated with human tumors fail to bind DNA, we mapped the DNA binding domain of wild-type p53 and examined its regulation by changes in the protein conformation. Using site-directed mutagenesis, residues 90-286 of mouse p53 were shown to form the sequence-specific DNA binding domain. Two highly conserved regions within this domain, regions IV and V, were implicated in contacting DNA. Wild-type p53 bound DNA as a tetramer, each subunit recognizing five nucleotides of the 20 nucleotide-long DNA site. Conformational shifts of the oligomerization domain propagated to the tetrameric DNA binding domain, regulating DNA binding activity, but did not affect the subunit stoichiometry of wild-type p53 oligomers. Interestingly, conformational shifts could also be propagated within certain p53 mutants, rescuing DNA binding. One of these mutants was the mouse equivalent of human histidine 273, which is frequently associated with human tumors.  相似文献   
249.
A sensitive, noninvasive method to detect localized prostate cancer, particularly for early detection and repetitive study in patients undergoing active surveillance, remains an unmet need. Here, we propose a molecular photoacoustic (PA) imaging approach by targeting the prostate‐specific membrane antigen (PSMA), which is over‐expressed in the vast majority of prostate cancers. We performed spectroscopic PA imaging in an experimental model of prostate cancer, namely, in immunocompromised mice bearing PSMA+ (PC3 PIP) and PSMA? (PC3 flu) tumors through administration of the known PSMA‐targeted fluorescence agent, YC‐27. Differences in contrast between PSMA+ and isogenic control tumors were observed upon PA imaging, with PSMA+ tumors showing higher contrast in average of 66.07‐fold with 5 mice at the 24‐hour postinjection time points. These results were corroborated using standard near‐infrared fluorescence imaging with YC‐27, and the squared correlation between PA and fluorescence intensities was 0.89. Spectroscopic PA imaging is a new molecular imaging modality with sufficient sensitivity for targeting PSMA in vivo, demonstrating the potential applications for other saturable targets relevant to cancer and other disorders.   相似文献   
250.
Kandil FI  Lappe M 《PloS one》2007,2(2):e264
Spatio-temporal interpolation describes the ability of the visual system to perceive shapes as whole figures (Gestalts), even if they are moving behind narrow apertures, so that only thin slices of them meet the eye at any given point in time. The interpolation process requires registration of the form slices, as well as perception of the shape's global motion, in order to reassemble the slices in the correct order. The commonly proposed mechanism is a spatio-temporal motion detector with a receptive field, for which spatial distance and temporal delays are interchangeable, and which has generally been regarded as monocular. Here we investigate separately the nature of the motion and the form detection involved in spatio-temporal interpolation, using dichoptic masking and interocular presentation tasks. The results clearly demonstrate that the associated mechanisms for both motion and form are binocular rather than monocular. Hence, we question the traditional view according to which spatio-temporal interpolation is achieved by monocular first-order motion-energy detectors in favour of models featuring binocular motion and form detection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号