首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   791篇
  免费   36篇
  827篇
  2023年   1篇
  2021年   10篇
  2020年   4篇
  2019年   7篇
  2018年   10篇
  2017年   7篇
  2016年   10篇
  2015年   18篇
  2014年   23篇
  2013年   34篇
  2012年   40篇
  2011年   46篇
  2010年   29篇
  2009年   25篇
  2008年   69篇
  2007年   69篇
  2006年   87篇
  2005年   70篇
  2004年   58篇
  2003年   61篇
  2002年   58篇
  2001年   4篇
  2000年   4篇
  1999年   6篇
  1998年   5篇
  1997年   7篇
  1996年   4篇
  1995年   4篇
  1994年   7篇
  1993年   2篇
  1992年   1篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1975年   5篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
排序方式: 共有827条查询结果,搜索用时 15 毫秒
21.
A new kinetic model is presented for analysis of experimental data of oxidation process catalyzed by milk xanthine oxidase. The kinetics for two substrates, xanthine and its analog 2-chloroadenine, in a broad pH range (5.8-9.0) are best described by an equation which is a rational function of degree 2:3 and 2:2, respectively.  相似文献   
22.
Potato leafroll virus is a member of the polerovirus genus. The isometric virion is formed by a coat protein encapsidating single-stranded, positive-sense, mono-partite genomic RNA with covalently attached viral protein at the 5' end. The coat protein of the virus exists in two forms: i) a 23 kDa protein, the product of the coat protein gene, and ii) a 78 kDa protein, the product of the coat protein gene and an additional open reading frame expressed by read-through of the coat protein gene stop codon. The aim of this work was the expression of potato leafroll virus coat protein-based proteins that would be able to assemble into virus-like particles in insect cells. These modified particles were tested for their ability to encapsidate nucleic acids. Two types of N-terminally His-tagged coat protein constructs were used for the expression in insect cells: one, encoding a 23 kDa protein with the C-terminal amino-acid sequence corresponding to the wild type coat protein and the second with additional clathrin binding domain at the C-terminus. The expression of these two proteins by a recombinant baculovirus was characterized by Western immunoblotting with antibodies directed against potato leafroll virus. The protection or putative encapsidation of nucleic acids by these two coat protein derivatives was shown by DNase I and RNase A protection assays.  相似文献   
23.
24.
Follicle-stimulating hormone (FSH) and triiodothyronine (T3) are known regulatory factors of spermatogenesis initiation. Connexin 43 (Cx43) is the most ubiquitous constitutive protein of gap junctions in the testis. This study evaluates the effects of the hyperstimulation of FSH and T3 during testicular maturation on Cx43 expression in the testis. The newborn, male Wistar rats were divided randomly into four experimental groups: FSH group-daily injections of FSH 7.5?IU/animal; T3 group-100?μg T3/kg body weight; FSH+T3 group-both substances; A control group-received vehicles in the same volume. Proliferating cell nuclear antigen immunohistochemistry and toluidine blue staining were used to determine the germ cell proliferation and degeneration. Cx43 immunolocalization was evaluated to find Cx43 maturational changes. Under FSH treatment, the proliferation rate was high so the total number of Sertoli cells increased with a low level of degeneration and lumen formation. T3 stimulation evoked a reduction in the proliferation rate and a decrease in Sertoli cell number but with intensive formation of lumen. T3+FSH inhibited the proliferation rate and stimulated lumen formation together with degeneration, which negatively influenced the number of germ cells in the seminiferous epithelium. We conclude that T3 action seems to be particularly connected with the maturation of Cx43 gap junctions. FSH stimulates maturation of Sertoli cell function, but this effect may take place regardless of the presence of Cx43-dependent intercellular communication. The hyperstimulation of both FSH and T3 damages Cx43 connections and hence evokes regressional changes in the seminiferous epithelium.  相似文献   
25.

Background

During standard gene cloning, the recombinant protein appearing in bacteria as the result of expression leakage very often inhibits cell proliferation leading to blocking of the cloning procedure. Although different approaches can reduce transgene basal expression, the recombinant proteins, which even in trace amounts inhibit bacterial growth, can completely prevent the cloning process.

Methods

Working to solve the problem of DNase II-like cDNA cloning, we developed a novel cloning approach. The method is based on separate cloning of the 5′ and 3′ fragments of target cDNA into a vector in such a way that the short Multiple Cloning Site insertion remaining between both fragments changes the reading frame and prevents translation of mRNA arising as a result of promoter leakage. Subsequently, to get the vector with full, uninterrupted Open Reading Frame, the Multiple Cloning Site insertion is removed by in vitro restriction/ligation reactions, utilizing the unique restriction site present in native cDNA.

Results

Using this designed method, we cloned a coding sequence of AcDNase II that is extremely toxic for bacteria cells. Then, we demonstrated the usefulness of the construct prepared in this way for overexpression of AcDNase II in eukaryotic cells.

Conclusions

The designed method allows cloning of toxic protein coding sequences that cannot be cloned by standard methods.

General significance

Cloning of cDNAs encoding toxic proteins is still a troublesome problem that hinders the progress of numerous studies. The method described here is a convenient solution to cloning problems that are common in research on toxic proteins.  相似文献   
26.

Background

Tumor suppressor PTEN is known to control a variety of processes related to cell survival, proliferation, and growth. PTEN expression is considered as a prognostic factor in some human neoplasms like breast, prostate, and thyroid cancer.

Methodology/Principal Findings

In this study we analyzed the influence of PTEN expression on the outcome of a randomized clinical trial of conventional versus 7-days-a-week postoperative radiotherapy for squamous cell cancer of the head and neck. The patients with cancer of the oral cavity, oropharynx, and larynx were randomized to receive 63 Gy in fractions of 1.8 Gy given 5 days a week (CF) or 7 days a week (p-CAIR). Out of 279 patients enrolled in the study, 147 paraffin blocks were available for an immunohistochemical assessment of PTEN. To evaluate the prognostic value of PTEN expression and the effect of fractionation relative to PTEN, the data on the outcome of a randomized clinical trial were analyzed. Tumors with a high intensity of PTEN staining had significant gain in the loco-regional control (LRC) from p-CAIR (5-year LRC 92.7% vs. 70.8%, for p-CAIR vs. CF, p = 0.016, RR = 0.26). By contrast, tumors with low intensity of PTEN did not gain from p-CAIR (5-year LRC 56.2% vs. 47.2%, p = 0.49, RR = 0.94). The intensity of PTEN highly affected the LRC in a whole group of 147 patients (5-year LRC 80.9% vs. 52.3% for high vs. low PTEN, p = 0.0007, RR = 0.32). In multivariate Cox analysis, including neck node involvement, EGFR, nm23, Ki-67, p53, cyclin D1, tumor site and margins, PTEN remained an independent predictor of LRC (RR = 2.8 p = 0.004).

Conclusions/Significance

These results suggest that PTEN may serve as a potent prognostic and predictive marker in postoperative radiotherapy for high-risk squamous cell cancer of the head and neck.  相似文献   
27.
Tertiary and quaternary structures of extracytoplasmic proteins containing more than one cysteine residue often require introduction of disulfide bonds. This process takes place in an oxidative environment, such as the periplasm of Gram-negative bacteria, and is catalyzed by Dsb (disulfide bond formation) proteins. Mutations in dsb genes influence the conformation and stability of many extracytoplasmic proteins. Thus, many pathogens become partially or fully attenuated due to improper folding of proteins that act as virulence factors. This review summarizes the current knowledge on Dsb proteins and their effect on the pathogenicity of Gram-negative bacteria. The potential application of Dsb proteins in biotechnology is also discussed.  相似文献   
28.
Eukaryotic cells utilize scavenger decapping enzymes to degrade cap structure following 3'-5' mRNA decay. Human DcpS recently has been described as a highly specific hydrolase (a member of the HIT family) that catalyses the cleavage of m(7)GpppG and short capped oligoribonucleotides. We have demonstrated here that cap-1 (m(7)GpppGm) is a preferred substrate among several investigated dinucleotide cap analogues m(7)Gp(n)N (n = 3-5, N is a purine or pyrimidine base) and m(7)GMP is always one of the reaction product. Cap analogues containing pyrimidine base instead of guanine or diphosphate chain are resistant to hydrolysis catalyzed by human scavenger. Contrary to the other enzymes of HIT family, hDcpS activity is not stimulated by Mg(2+).  相似文献   
29.
Short-term tests that detect genetic damage have provided information needed for evaluating carcinogenic risks of chemicals to man. The mutagenicity of cis-bis(3-aminoflavone)dichloroplatinum(II) (cis-[Pt(AF)2Cl2]) in comparison with cis-diamminedichloroplatinum(II) (cis-DDP) was evaluated in the standard plate-incorporation assay in four strains of Salmonella typhimurium: TA97a, TA98, TA100 and TA102, in experiments with and without metabolic activation. It was shown that cis-[Pt(AF)2Cl2] acts directly and is mutagenic for three strains of S. typhimurium: TA97a, TA98 and TA100. In comparison with cis-DDP this compound showed a weaker genotoxicity. Contrary to cis-DDP it has not shown toxic properties in the tester bacteria. The genotoxicity of both tested compounds was evaluated using chromosomal aberration, sister chromatid exchange and micronucleus assays, without and with metabolic activation, in human lymphocytes in vitro. The inhibitory effects of both compounds on mitotic activity, cell proliferation kinetics and nuclear division index were also compared. In all test systems applied, cis-[Pt(AF)2Cl2] was a less effective clastogen and a weaker inducer of both sister chromatid exchanges and micronuclei in comparison with cis-DDP, with and without metabolic activation. cis-[Pt(AF)2Cl2] has a direct mechanism of action and is less cytostatic and cytotoxic than the other compound. These results provide important data on the genotoxicity of cis-[Pt(AF)2Cl2] and indicate its beneficial properties as a potential anticancer drug, especially in comparison with cis-DDP.  相似文献   
30.
The structure-specific ChSI nuclease from wheat (Triticum vulgare) chloroplast stroma has been previously purified and characterized in our laboratory. It is a single-strand-specific DNA and RNA endonuclease. Although the enzyme has been initially characterized and used as a structural probe, its biological function is still unknown. Localization of the ChSI enzyme inside chloroplasts, possessing their own DNA that is generally highly exposed to UV light and often affected by numerous redox reactions and electron transfer processes, might suggest, however, that this enzyme could be involved in DNA repair. The repair of some types of DNA damage has been shown to proceed through branched DNA intermediates which are substrates for the structure-specific DNA endonucleases. Thus we tested the substrate specificity of ChSI endonuclease toward various branched DNAs containing 5' flap, 5' pseudoflap, 3' pseudoflap, or single-stranded bulged structural motifs. It appears that ChSI has a high 5' flap structure-specific endonucleolytic activity. The catalytic efficiency (k(cat)/K(M)) of the enzyme is significantly higher for the 5' flap substrate than for single-stranded DNA. The ChSI 5' flap activity was inhibited by high concentrations of Mg(2+), Mn(2+), Zn(2+), or Ca(2+). However, low concentrations of divalent cations could restore the loss of ChSI activity as a consequence of EDTA pretreatment. In contrast to other known 5' flap nucleases, the chloroplast enzyme ChSI does not possess any 5'-->3' exonuclease activity on double-stranded DNA. Therefore, we conclude that ChSI is a 5' flap structure-specific endonuclease with nucleolytic activity toward single-stranded substrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号