首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   749篇
  免费   77篇
  2023年   4篇
  2022年   10篇
  2021年   15篇
  2020年   16篇
  2019年   18篇
  2018年   32篇
  2017年   19篇
  2016年   28篇
  2015年   33篇
  2014年   37篇
  2013年   39篇
  2012年   44篇
  2011年   52篇
  2010年   42篇
  2009年   22篇
  2008年   37篇
  2007年   39篇
  2006年   30篇
  2005年   32篇
  2004年   26篇
  2003年   30篇
  2002年   23篇
  2001年   16篇
  2000年   20篇
  1999年   28篇
  1998年   15篇
  1997年   10篇
  1995年   7篇
  1994年   4篇
  1993年   2篇
  1992年   10篇
  1991年   3篇
  1990年   5篇
  1989年   4篇
  1988年   7篇
  1987年   6篇
  1986年   6篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1981年   2篇
  1979年   5篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1974年   5篇
  1973年   4篇
  1970年   3篇
  1968年   5篇
  1963年   2篇
排序方式: 共有826条查询结果,搜索用时 140 毫秒
31.
32.
The ribosomal stalk is involved directly in the interaction of the elongation factors with the ribosome during protein synthesis. The stalk is formed by a complex of five proteins, four small acidic polypepties and a larger protein which directly interacts with the rRNA at the GTPase center. In eukaryotes, the acidic components correspond to the 12 kDa P1 and P2 proteins, and the RNA binding component is protein P0. All these proteins are found to be phosphorylated in eukaryotic organisms. Previousin vitro data suggested this modification was involved in the activity of this structure. To confirm this possibility a mutational study has shown that phosphorylation takes place at a serine residue close to the carboxyl end of proteins P1, P2 and P0. This serine is part of a consensus casein kinase II phosphorylation site. However, by using a yeast strain carrying a temperature sensitive mutant, it has been shown that CKII is probably not the only enzyme responsible for this modification. Three new protein kinases, RAPI, RAPII and RAPIII, have been purified and compared with CKII and PK60, a previously reported enzyme that phosphorylates the stalk proteins. Differences among the five enzymes have been studied. It has also been found that some typical effects of the PKC kinase stimulate thein vitro phosphorylation of the stalk proteins. All the data available suggest that phosphorylation, although it is not involved in the interaction of the acidic proteins with the ribosome, affects ribosome activity and might participate in some ribosome regulatory mechanism. Presented at theSymposium on Regulation of Translation of Genetic Information by Protein Phosphorylation, 21st Congress of the Czechoslovak Society for Microbiology, Hradec Králové (Czech Republic), September 6–10, 1998.  相似文献   
33.
The regulation of cytosolic Ca2+ homeostasis is essential for cells, and particularly for vascular smooth muscle cells. In this regulation, there is a participation of different factors and mechanisms situated at different levels in the cell, among them Ca2+ pumps play an important role. Thus, Ca2+ pump, to extrude Ca2+; Na+/Ca2+ exchanger; and different Ca2+ channels for Ca2+ entry are placed in the plasma membrane. In addition, the inner and outer surfaces of the plasmalemma possess the ability to bind Ca2+ that can be released by different agonists. The sarcoplasmic reticulum has an active role in this Ca2+ regulation; its membrane has a Ca2+ pump that facilitates luminal Ca2+ accumulation, thus reducing the cytosolic free Ca2+ concentration. This pump can be inhibited by different agents. Physiologically, its activity is regulated by the protein phospholamban; thus, when it is in its unphosphorylated state such a Ca2+ pump is inhibited. The sarcoplasmic reticulum membrane also possesses receptors for 1,4,5-inositol trisphosphate and ryanodine, which upon activation facilitates Ca2+ release from this store. The sarcoplasmic reticulum and the plasmalemma form the superficial buffer barrier that is considered as an effective barrier for Ca2+ influx. The cytosol possesses different proteins and several inorganic compounds with a Ca2+ buffering capacity. The hypothesis of capacitative Ca2+ entry into smooth muscle across the plasma membrane after intracellular store depletion and its mechanisms of inhibition and activation is also commented.  相似文献   
34.
35.
36.
37.
38.
Discrete myocardial lesions created through the delivery of radiofrequency (RF) energy can expand; however, the mechanisms have not been established. Matrix metalloproteinases (MMPs) play an important role in myocardial remodeling, and MMP activity can be regulated by the tissue inhibitors of the metalloproteinases (TIMPs). This study examined the role of TIMP-1 in postinjury myocardial remodeling. Lesions were created on the left ventricular (LV) epicardium of wild-type (WT, 8-12 wk, 129SVE) and age-matched TIMP-1 gene-deficient (timp-1(-/-)) mice through the delivery of RF current (80 degrees C, 30 s). Heart mass, LV scar volumes, and collagen content were measured at 1 h and 3, 7, and 28 days postinjury (n = 10 each). Age-matched, nonablated mice were used as reference controls (n = 5). Heart mass indexed to tibial length increased in WT and timp-1(-/-) mice but was greater in the timp-1(-/-) mice by 7 days. Scar volumes increased in a time-dependent manner in both groups but were higher in the timp-1(-/-) mice than the WT mice at 7 days (1.48 +/- 0.09 vs. 1.20 +/- 0.11 mm(3).mg(-1).mm, P < 0.05) and remained higher at 28 days. In the remote myocardium, wall thickness was greater and relative collagen content was lower in the timp-1(-/-) mice at 28 days postinjury. Discrete myocardial RF lesions expand in a time-dependent manner associated with myocyte hypertrophy remote to the scar. Moreover, postinjury myocardial remodeling was more extensive with TIMP-1 gene deletion. Thus TIMP-1 either directly or through modulation of MMP activity may regulate myocardial remodeling following infliction of a discrete injury.  相似文献   
39.
Transmural electrical stimulation of the sympathetic nerve endings of human saphenous vein biopsies released two forms of NPY identified chromatographically as native and oxidized peptide. The release process is dependent on extracellular calcium, the frequency, and the duration of the stimuli. While guanethidine reduced the overflow of ir-NPY, phenoxybenzamine did not augment NPY release, but increased that of noradrenaline. Oxidized NPY, like native NPY, potentiated the noradrenaline and adenosine 5'-triphospahate-induced vasoconstriction, an effect blocked by BIBP 3226 and consonant with the RT-PCR detection of the mRNA encoding the NPY Y1 receptor. These results highlight the functional role of NPY in human vascular sympathetic reflexes.  相似文献   
40.
The objective of the present study was to investigate the in vitro effects of octanoic acid, which accumulates in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency and in Reye syndrome, on key enzyme activities of energy metabolism in the cerebral cortex of young rats. The activities of the respiratory chain complexes I–IV, creatine kinase, and Na+, K+-ATPase were evaluated. Octanoic acid did not alter the electron transport chain and creatine kinase activities, but, in contrast, significantly inhibited Na+, K+-ATPase activity both in synaptic plasma membranes and in homogenates prepared from cerebral cortex. Furthermore, decanoic acid, which is also increased in MCAD deficiency, and oleic acid strongly reduced Na+, K+-ATPase activity, whereas palmitic acid had no effect. We also examined the effects of incubating glutathione and trolox (-tocopherol) alone or with octanoic acid on Na+, K+-ATPase activity. Tested compounds did not affect Na+, K+-ATPase activity by itself, but prevented the inhibitory effect of octanoic acid. These results suggest that inhibition of Na+, K+-ATPase activity by octanoic acid is possibly mediated by oxidation of essential groups of the enzyme. Considering that Na+, K+-ATPase is critical for normal brain function, it is feasible that the significant inhibition of this enzyme activity by octanoate and also by decanoate may be related to the neurological dysfunction found in patients affected by MCAD deficiency and Reye syndrome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号