首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   37篇
  2021年   9篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   6篇
  2015年   10篇
  2014年   15篇
  2013年   10篇
  2012年   19篇
  2011年   18篇
  2010年   7篇
  2009年   16篇
  2008年   13篇
  2007年   19篇
  2006年   15篇
  2005年   22篇
  2004年   16篇
  2003年   15篇
  2002年   22篇
  2001年   6篇
  2000年   8篇
  1999年   10篇
  1997年   4篇
  1996年   7篇
  1994年   8篇
  1992年   16篇
  1991年   6篇
  1990年   7篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   6篇
  1985年   5篇
  1983年   7篇
  1982年   2篇
  1981年   6篇
  1980年   2篇
  1979年   16篇
  1978年   2篇
  1977年   8篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1970年   2篇
  1967年   4篇
  1966年   2篇
  1965年   4篇
  1963年   2篇
  1938年   2篇
排序方式: 共有436条查询结果,搜索用时 15 毫秒
21.
Velocity sedimentation-derived subpopulations of peritoneal exudate macrophages have been pulsed with a variety of TNP-coupled carbohydrate/protein antigens and investigated for their ability to present those antigens in immunogenic form to whole spleen cell populations. The data presented indicate that while no difference is seen in the ability of the various subpopulations examined to present protein antigens for an antibody response, different cells are certainly involved in the antigen handling of carbohydrate antigens for an antibody response. Moreover, it seems that individual macrophage subpopulations can only interact with certain subpopulations of B lymphocytes to induce antibody responses to the same immunogenic determinants.  相似文献   
22.
23.
Patterns of odour similarity among carbonyls and their mixtures   总被引:5,自引:3,他引:2  
  相似文献   
24.
The HUGO Gene Nomenclature Committee has approved gene symbols for the majority of protein-coding genes on the human reference genome. To adequately represent regions of complex structural variation, the Genome Reference Consortium now includes alternative representations of some of these regions as part of the reference genome. Here, we describe examples of how we name novel genes in these regions and how this nomenclature is displayed on our website, http://genenames.org.  相似文献   
25.
A framework of general factors for infectious disease emergence was made operational for Campylobacter utilising explanatory variables including time series and risk factor data. These variables were generated using a combination of empirical epidemiology, case-case and case-control studies, time series analysis, and microbial sub-typing (source attribution, diversity, genetic distance) to unravel the changing/emerging aetiology of human campylobacteriosis. The study focused on Scotland between 1990–2012 where there was a 75% increase in reported cases that included >300% increase in the elderly and 50% decrease in young children. During this period there were three phases 1990–2000 a 75% rise and a 20% fall to 2006, followed by a 19% resurgence. The rise coincided with expansions in the poultry industry, consumption of chicken, and a shift from rural to urban cases. The post-2000 fall occurred across all groups apart from the elderly and coincided with a drop of the prevalence of Campylobacter in chicken and a higher proportion of rural cases. The increase in the elderly was associated with uptake of proton pump inhibitors. During the resurgence the increase was predominantly in adults and the elderly, again there was increasing use of PPIs and high prevalences in chicken and ruminants. Cases associated with foreign travel during the study also increased from 9% to a peak of 16% in 2006 before falling to an estimated 10% in 2011, predominantly in adults and older children. During all three periods source attribution, genetic distance, and diversity measurements placed human isolates most similar to those in chickens. A combination of emergence factors generic for infectious diseases were responsible for the Campylobacter epidemic. It was possible to use these to obtain a putative explanation for the changes in human disease and the potential to make an informed view of how incidence rates may change in the future.  相似文献   
26.
Most cells enter mitosis once they have reached a defined size. In the fission yeast Schizosaccharomyces pombe, mitotic entry is orchestrated by a geometry-sensing mechanism that involves the Cdk1/Cdc2-inhibiting Wee1 kinase. The factors upstream of Wee1 gather together in interphase to form a characteristic medial and cortical belt of nodes. Nodes are also considered to be precursors of the cytokinesis contractile actomyosin ring (CAR). Here we describe a new component of the interphase nodes and cytokinesis rings, which we named Nod1. Consistent with its role in cell size control at division, nod1Δ cells were elongated and epistatic with regulators of Wee1. Through biochemical and localisation studies, we placed Nod1 in a complex with the Rho-guanine nucleotide exchange factor Gef2. Nod1 and Gef2 mutually recruited each other in nodes and Nod1 also assembles Gef2 in rings. Like gef2Δ, nod1Δ cells showed a mild displacement of their division plane and this phenotype was severely exacerbated when the parallel Polo kinase pathway was also compromised. We conclude that Nod1 specifies the division site by localising Gef2 to the mitotic cell middle. Previous work showed that Gef2 in turn anchors factors that control the spatio-temporal recruitment of the actin nucleation machinery. It is believed that the actin filaments originated from the nodes pull nodes together into a single contractile ring. Surprisingly however, we found that node proteins could form pre-ring helical filaments in a cdc12-112 mutant in which nucleation of the actin ring is impaired. Furthermore, the deletion of either nod1 or gef2 created an un-expected situation where different ring components were recruited sequentially rather than simultaneously. At later stages of cytokinesis, these various rings appeared inter-fitted rather than merged. This study brings a new slant to the understanding of CAR assembly and function.  相似文献   
27.
The QT interval is a recording of cardiac electrical activity. Previous genome-wide association studies identified genetic variants that modify the QT interval upstream of LITAF (lipopolysaccharide-induced tumor necrosis factor-α factor), a protein encoding a regulator of endosomal trafficking. However, it was not clear how LITAF might impact cardiac excitation. We investigated the effect of LITAF on the voltage-gated sodium channel Nav1.5, which is critical for cardiac depolarization. We show that overexpressed LITAF resulted in a significant increase in the density of Nav1.5-generated voltage-gated sodium current INa and Nav1.5 surface protein levels in rabbit cardiomyocytes and in HEK cells stably expressing Nav1.5. Proximity ligation assays showed co-localization of endogenous LITAF and Nav1.5 in cardiomyocytes, whereas co-immunoprecipitations confirmed they are in the same complex when overexpressed in HEK cells. In vitro data suggest that LITAF interacts with the ubiquitin ligase NEDD4-2, a regulator of Nav1.5. LITAF overexpression down-regulated NEDD4-2 in cardiomyocytes and HEK cells. In HEK cells, LITAF increased ubiquitination and proteasomal degradation of co-expressed NEDD4-2 and significantly blunted the negative effect of NEDD4-2 on INa. We conclude that LITAF controls cardiac excitability by promoting degradation of NEDD4-2, which is essential for removal of surface Nav1.5. LITAF-knockout zebrafish showed increased variation in and a nonsignificant 15% prolongation of action potential duration. Computer simulations using a rabbit-cardiomyocyte model demonstrated that changes in Ca2+ and Na+ homeostasis are responsible for the surprisingly modest action potential duration shortening. These computational data thus corroborate findings from several genome-wide association studies that associated LITAF with QT interval variation.  相似文献   
28.
Structural determinants of RNA recognition and cleavage by Dicer   总被引:5,自引:0,他引:5  
A hallmark of RNA interference is the production of short double-stranded RNA (dsRNA) molecules 21-28 nucleotides in length by the specialized RNase III protein Dicer. Dicer enzymes uniquely generate RNA products of specific lengths by mechanisms that have not been fully elucidated. Here we show that the PAZ domain responsible for dsRNA end recognition confers this measuring ability through both its structural position and RNA-binding specificity. Point mutations define the dsRNA-binding surface and reveal a protein loop important for cleavage of substrates containing perfect or imperfect base pairing. On the basis of these results, we reengineered Dicer with a U1A RNA-binding domain in place of the PAZ domain to create an enzyme with altered end-recognition specificity and RNA product length. These results explain how Dicer functions as a molecular ruler and provide a structural basis for modifying its activity in cells.  相似文献   
29.
Classification and nomenclature of all human homeobox genes   总被引:2,自引:0,他引:2  

Background

The homeobox genes are a large and diverse group of genes, many of which play important roles in the embryonic development of animals. Increasingly, homeobox genes are being compared between genomes in an attempt to understand the evolution of animal development. Despite their importance, the full diversity of human homeobox genes has not previously been described.

Results

We have identified all homeobox genes and pseudogenes in the euchromatic regions of the human genome, finding many unannotated, incorrectly annotated, unnamed, misnamed or misclassified genes and pseudogenes. We describe 300 human homeobox loci, which we divide into 235 probable functional genes and 65 probable pseudogenes. These totals include 3 genes with partial homeoboxes and 13 pseudogenes that lack homeoboxes but are clearly derived from homeobox genes. These figures exclude the repetitive DUX1 to DUX5 homeobox sequences of which we identified 35 probable pseudogenes, with many more expected in heterochromatic regions. Nomenclature is established for approximately 40 formerly unnamed loci, reflecting their evolutionary relationships to other loci in human and other species, and nomenclature revisions are proposed for around 30 other loci. We use a classification that recognizes 11 homeobox gene 'classes' subdivided into 102 homeobox gene 'families'.

Conclusion

We have conducted a comprehensive survey of homeobox genes and pseudogenes in the human genome, described many new loci, and revised the classification and nomenclature of homeobox genes. The classification scheme may be widely applicable to homeobox genes in other animal genomes and will facilitate comparative genomics of this important gene superclass.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号