首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   4篇
  48篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   3篇
  1995年   1篇
  1991年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1968年   1篇
  1967年   1篇
  1961年   1篇
  1954年   1篇
  1938年   1篇
排序方式: 共有48条查询结果,搜索用时 0 毫秒
31.
Volemitol (d-glycero-d-manno-heptitol, α-sedoheptitol) is an unusual seven-carbon sugar alcohol that fulfills several important physiological functions in certain species of the genus Primula. Using the horticultural hybrid polyanthus (Primula × polyantha) as our model plant, we found that volemitol is the major nonstructural carbohydrate in leaves of all stages of development, with concentrations of up to 50 mg/g fresh weight in source leaves (about 25% of the dry weight), followed by sedoheptulose (d-altro-2-heptulose, 36 mg/g fresh weight), and sucrose (4 mg/g fresh weight). Volemitol was shown by the ethylenediaminetetraacetate-exudation technique to be a prominent phloem-mobile carbohydrate. It accounted for about 24% (mol/mol) of the phloem sap carbohydrates, surpassed only by sucrose (63%). Preliminary 14CO2 pulse-chase radiolabeling experiments showed that volemitol was a major photosynthetic product, preceded by the structurally related ketose sedoheptulose. Finally, we present evidence for a novel NADPH-dependent ketose reductase, tentatively called sedoheptulose reductase, in volemitol-containing Primula species, and propose it as responsible for the biosynthesis of volemitol in planta. Using enzyme extracts from polyanthus leaves, we determined that sedoheptulose reductase has a pH optimum between 7.0 and 8.0, a very high substrate specificity, and displays saturable concentration dependence for both sedoheptulose (apparent Km = 21 mm) and NADPH (apparent Km = 0.4 mm). Our results suggest that volemitol is important in certain Primula species as a photosynthetic product, phloem translocate, and storage carbohydrate.Alditols (sugar alcohols or acyclic polyols) may be chemically described as reduction products of aldose or ketose sugars. The most prevalent plant alditols are the hexitols sorbitol, mannitol, and galactitol. However, as many as 17 different alditols occur naturally in higher plants (for review, see Bieleski, 1982; Lewis, 1984; Loescher and Everard, 1996). The lesser-known alditols are often restricted in their occurrence but still fulfill important functions in those plants where they do occur. Volemitol (Fig. (Fig.1) 1) is a good example of a less common but important alditol. This seven-carbon sugar alcohol seems to be confined to certain sections of the genus Primula, so much so that it has been suggested as a useful chemotaxonomical marker (Kremer, 1978). Very little is known about the physiology and metabolism of volemitol in primulas, except that it was an early photosynthetic product in cowslip (Primula veris) and oxslip (Primula elatior) (Kremer, 1978). Figure 1Fischer projections of volemitol and its four structurally related seven-carbon sugars. Nomenclature follows that of Collins (1987); trivial names are underlined.The physiological roles of alditols are manifold and largely resemble those of disaccharides and oligosaccharides. They include photosynthetic assimilation, translocation and storage of carbon, and reducing power, as well as protection against different types of stresses (for review, see Bieleski, 1982; Lewis, 1984; Loescher and Everard, 1996; Stoop et al., 1996). The biosynthetic pathways of the hexitols sorbitol (glucitol), mannitol, galactitol (dulcitol), and the pentitol ribitol have been established in higher plants. They generally use NADPH as a hydrogen donor and aldose phosphate as a hydrogen acceptor, in concert with the corresponding phosphatases. One exception might be galactitol, which was suggested to be formed directly from unphosphorylated Gal (and NADPH) (Negm, 1986). Although all foliar alditols are thought to be phloem-mobile (Lewis, 1984), this has only been demonstrated for sorbitol, mannitol, and galactitol (Zimmermann and Ziegler, 1975; Davis and Loescher, 1990; Moing et al., 1992; Flora and Madore, 1993).To expand our knowledge of alditol metabolism in higher plants beyond that of hexitols, we studied the carbohydrate metabolism of polyanthus (Primula × polyantha). This popular horticultural hybrid of primrose (Primula vulgaris), oxlip, and cowslip (Mabberley, 1997) was chosen because preliminary experiments showed that its volemitol content is very high, similar to that of the wild-type species, and because it may be easily grown both outdoors and indoors.We give a general overview on volemitol metabolism in polyanthus with special emphasis on the role of volemitol in plant development and phloem transport. We also report on a novel enzyme, a NADPH-dependent ketose reductase, which forms volemitol by the reduction of sedoheptulose.  相似文献   
32.
33.
Summary Single-stranded DNA vectors were constructed in vitro by insertion of various DNA fragments into the Intergenic Region of the single-stranded DNA phage fd. These inserts introduce into the phage genome unique cleavage sites for restriction nucleases which are suited for sticky joining in cloning experiments. Since these sites are usually located within genes coding for antibiotic resistance, inactivation of a resistance gene by insertion can be used as a marker for the successful cloning of a DNA fragment. Resistance genes also allow to select for recombinant DNA phages and to minimize the loss of DNA inserts which otherwise becomes significant above an insert size of about one kb. Cloning of several DNA fragments is described and strand separation of double-stranded DNA fragments by means of cloning into fd DNA is given as an example for application of single-stranded DNA vectors.Abbreviations Ap ampicillin - Cm chloramphenicol - Km kanamycin - Sm streptomycin - kb, kbp a unit length equivalent to 1000 bases, respectively 1000 base pairs - wt wild type  相似文献   
34.
35.
36.
37.
38.
DNA synthesis, as measured by incorporation of [(3)H]TTP, was inhibited in Swiss mouse 3T3 cells treated with interferon and subsequently permeabilized with lysolecithin. The degree of inhibition observed was similar in intact or permeabilized cells. The interferon-induced antiviral state was retained in permeabilized cells.  相似文献   
39.
The fungiid Heliofungia actiniformis is one of the most popular scleractinian coral species in the growing live aquarium trade, with the majority of specimens originating in Indonesia. Details on population connectivity may potentially provide important information with regards to harvest management efforts. Genetic structure was examined, using ribosomal ITS1, 5.8S and partial ITS2 sequences on a small scale among populations in the Spermonde Archipelago, South Sulawesi (up to 65 km distance, Φst = 0.09), and on a large scale throughout the Indo-Malay Archipelago (up to 2,900 km distance, Φst = 0.26). Significant genetic structuring was found at both scales. Within the Spermonde Archipelago isolation by distance as well as local oceanographic features shaped patterns of genetic connectivity. On the large scale, the data revealed genetically distinct populations in Tomini Bay, New Guinea and the Thousand Islands near Jakarta, and a lack of genetic differentiation among populations lying close to or directly in the path of the Indonesian throughflow: from the central Visayas to the Flores Sea (Φct = 0.32). Whilst the influence of both historical and present day processes on genetic structuring of H. actiniformis populations was revealed, large scale results further emphasised the importance of oceanographic dynamics on larval dispersal patterns in this species. Potential for larval input from surrounding populations, and the increased vulnerability of upstream as well as isolated populations should be taken into consideration when setting future harvest quotas.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号