首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1967篇
  免费   161篇
  2023年   10篇
  2022年   31篇
  2021年   34篇
  2020年   28篇
  2019年   38篇
  2018年   38篇
  2017年   42篇
  2016年   56篇
  2015年   105篇
  2014年   89篇
  2013年   119篇
  2012年   160篇
  2011年   153篇
  2010年   112篇
  2009年   80篇
  2008年   117篇
  2007年   104篇
  2006年   83篇
  2005年   103篇
  2004年   97篇
  2003年   81篇
  2002年   74篇
  2001年   22篇
  2000年   23篇
  1999年   29篇
  1998年   21篇
  1997年   16篇
  1996年   11篇
  1995年   11篇
  1994年   11篇
  1993年   11篇
  1992年   16篇
  1991年   19篇
  1990年   6篇
  1989年   13篇
  1988年   12篇
  1987年   10篇
  1985年   8篇
  1984年   9篇
  1983年   12篇
  1982年   10篇
  1981年   6篇
  1980年   8篇
  1979年   7篇
  1978年   7篇
  1975年   8篇
  1974年   6篇
  1973年   5篇
  1971年   5篇
  1969年   5篇
排序方式: 共有2128条查询结果,搜索用时 31 毫秒
51.
In the evolution of anatomically modern man and his subspecies most specialists have concentrated on investigating geographical areas other than Africa as the possible area of origin.In this study 20 fossil hominids and associated faunal remains from South and East Africa were dated by microanalysis, radiocarbon, and amino-acid dating in order to see whether modern man appears later, was sympatric, or even predated Neandertal man.These dates indicate that anatomically modern man occurs sympatrically and possibly even predates the Rhodesian group of Neandertals in Africa. Modern man might also be contemporary to and possibly even predate the occurrence of Neandertal in Europe.This would indicate that modern man did not evolve from but possibly gave rise to the Neandertals as off-shoots.Two possibilities for the evolution of modern man are suggested. First, that Homo sapiens capensis evolved about 90,000 to 100,000 years ago from possibly Homo erectus by way of a “basic” Homo sapiens and later gave rise to Homo sapiens rhodesiensis, Homo sapiens afer, and possibly Homo sapiens palestinus around 50,000 years ago with Homo neanderthalensis and Homo sapiens capensis evolving separately from Homo erectus. In this case Homo neanderthalensis would be a different species from Homo sapiens which includes Homo sapiens capensis, Homo sapiens rhodesiensis, Homo sapiens afer, and possibly Homo sapiens palestinus.Secondly, Homo sapiens capensis evolved by way of a “basic” Homo sapiens with Homo sapiens rhodesiensis and Homo sapiens palestinus branching off from Homo sapiens capensis around 50,000 years ago. Before that, around 90,000 to 100,000 years ago Homo sapiens capensis evolved first and was then followed by Homo sapiens neanderthalensis from a “basic” Homo sapiens stock, but diverged. This means, all Neandertals, Homo sapiens capensis, Homo sapiens sapiens and Homo sapiens afer can be considered as subspecies of Homo sapiens.The author favors the first scheme since on relative dating grounds the existence of Neandertal man in Europe before the earliest date of Homo sapiens capensis and a “basic” Homo sapiens seems to be fairly well documented. Irrespective of either one of these possibilities, modern man evolved in Africa and seems to have migrated into Europe and other parts of the world.New absolute dating techniques are mentioned in detail like the new radiocarbon-collagen method and amino acid dating.  相似文献   
52.
53.
We have isolated the chicken LIS1 homolog, chLIS1, with DNA sequence similarity of over 68% to the human cDNA and 99% amino acid identity. Additionally, we describe the pattern of chLIS1 expression in the chicken embryo. The early embryonic expression is highly specific to the developing nervous system, whereas later the expression is more widespread. Received: 16 February 1999 / Accepted: 30 March 1999  相似文献   
54.
Hybridization between different species of parasites is increasingly being recognised as a major public and veterinary health concern at the interface of infectious diseases biology, evolution, epidemiology and ultimately control. Recent research has revealed that viable hybrids and introgressed lineages between Schistosoma spp. are prevalent across Africa and beyond, including those with zoonotic potential. However, it remains unclear whether these hybrid lineages represent recent hybridization events, suggesting hybridization is ongoing, and/or whether they represent introgressed lineages derived from ancient hybridization events. In human schistosomiasis, investigation is hampered by the inaccessibility of adult-stage worms due to their intravascular location, an issue which can be circumvented by post-mortem of livestock at abattoirs for Schistosoma spp. of known zoonotic potential. To characterise the composition of naturally-occurring schistosome hybrids, we performed whole-genome sequencing of 21 natural livestock infective schistosome isolates. To facilitate this, we also assembled a de novo chromosomal-scale draft assembly of Schistosoma curassoni. Genomic analyses identified isolates of S. bovis, S. curassoni and hybrids between the two species, all of which were early generation hybrids with multiple generations found within the same host. These results show that hybridization is an ongoing process within natural populations with the potential to further challenge elimination efforts against schistosomiasis.  相似文献   
55.
56.
57.
Listeria monocytogenes (Lm) is a human intracellular pathogen widely used to uncover the mechanisms evolved by pathogens to establish infection. However, its capacity to perturb the host cell cycle was never reported. We show that Lm infection affects the host cell cycle progression, increasing its overall duration but allowing consecutive rounds of division. A complete Lm infectious cycle induces a S-phase delay accompanied by a slower rate of DNA synthesis and increased levels of host DNA strand breaks. Additionally, DNA damage/replication checkpoint responses are triggered in an Lm dose-dependent manner through the phosphorylation of DNA-PK, H2A.X, and CDC25A and independently from ATM/ATR. While host DNA damage induced exogenously favors Lm dissemination, the override of checkpoint pathways limits infection. We propose that host DNA replication disturbed by Lm infection culminates in DNA strand breaks, triggering DNA damage/replication responses, and ensuring a cell cycle delay that favors Lm propagation.  相似文献   
58.
The induction of delayed type hypersensitivity (DTH) and tolerance to DTH against bovine insulin in mice were explored. DTH was induced with insulin in complete Freund's adjuvant (CFA) and was assessed by ear swelling in vivo and by antigen-driven cell proliferation in vitro. Using the concept that thymus cell unresponsiveness is most easily accomplished via antigen on syngeneic membranes, tolerance was induced by iv injection of syngeneic lymphoid cells which had been coupled to insulin with carbodiimide. Mice tolerized with insulin-coupled cells and then sensitized with insulin-CFA had diminished ear swelling in vivo and decreased insulin-driven cell proliferation in vitro. This unresponsiveness was antigen specific but was also inconstant in degree with regard to suppression of ear swelling, most likely because of variability in coupling of insulin to cells. Proliferative responses were more uniformly suppressed, suggesting the possibility that two target cells were being tolerized. Thus, as with other proteins, the biologically active insulin can be used to induce tolerance.  相似文献   
59.
The mode of action of antidepressant drugs may be related to mechanisms of monoamines receptor adaptation, including serotonin 5-HT4 receptor subtypes. Here we investigated the effects of repeated treatment with the selective serotonin reuptake inhibitor fluoxetine for 21 days (5 and 10 mg/kg, p.o., once daily) on the sensitivity of 5-HT4 receptors by using receptor autoradiography, adenylate cyclase assays and extracellular recording techniques in rat brain. Fluoxetine treatment decreased the density of 5-HT4 receptor binding in the CA1 field of hippocampus as well as in several areas of the striatum over the doses of 5–10 mg/kg. In a similar way, we found a significant lower response to zacopride-stimulated adenylate cyclase activity in the fluoxetine 10 mg/kg/day treated group. Furthermore, post-synaptic 5-HT4 receptor activity in hippocampus-measured as the excitatory action of zacopride in the pyramidal cells of CA1 evoked by Schaffer collateral stimulation was attenuated in rats treated with both doses of fluoxetine. Taken together, these results support the concept that a net decrease in the signalization pathway of 5-HT4 receptors occurs after chronic selective serotonin reuptake inhibitor treatment: this effect may underlie the therapeutic efficacy of these drugs.  相似文献   
60.
The reaction of halflanthanidocene aryloxides CpR′Ln(OArtBu,R)2 (Ln = Y, La, Lu; CpR′ = C5Me5, C4Me4H; R = H, Me) and halflanthanidocene alkoxides [(C5Me5)Ln(OCH2CMe3)2]2 (Ln = Y, Lu) with trimethylaluminum (TMA) was investigated. Monomeric CpR′Ln(OArtBu,R)2, derived from the ortho-tBu-substituted OC6H2tBu2-2,6-R-4 (R = H, Me) ligands, form mono(tetramethylaluminate) complexes CpR′Ln(OArtBu,R)(AlMe4) for the smaller lanthanide metal centers yttrium and lutetium. Such an [aryloxide] → [aluminate] ligand exchange was not observed at the larger lanthanum metal center. The mobility of the tetramethylaluminate ligands of complexes CpR′Ln(OArtBu,R)(AlMe4) (Ln = Y, Lu) was examined by variable-temperature (VT) 1H NMR spectroscopy, revealing two signals for bridging and terminal methyl groups at lower temperatures. The treatment of complexes CpR′Ln(OArtBu,R)(AlMe4) with donor solvent d8-THF gave CpR′Ln(OArtBu,R)(Me)(d8-THF)2 (Ln = Y, Lu) with terminal methyl groups, according to a donor-induced aluminate cleavage reaction. Dimeric [(C5Me5)Ln(OCH2CMe3)2]2 (Ln = Y, Lu) was synthesized from (C5Me5)Ln(NiPr2)2(THF) and reacted with two equivalents of TMA per Ln center to yield monomeric bis(TMA) adduct complexes (C5Me5)Ln(OCH2CMe3)2(AlMe3)2(Ln = Y, Lu). VT NMR spectroscopic studies confirmed a high mobility of the Ln(μ-OCH2CMe3)(μ-Me)AlMe2 moieties at an ambient temperature. Both bis(TMA) adduct complexes were characterized by X-ray structure analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号