首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3225篇
  免费   328篇
  2022年   31篇
  2021年   49篇
  2020年   41篇
  2019年   47篇
  2018年   50篇
  2017年   50篇
  2016年   96篇
  2015年   176篇
  2014年   162篇
  2013年   197篇
  2012年   245篇
  2011年   234篇
  2010年   177篇
  2009年   96篇
  2008年   173篇
  2007年   165篇
  2006年   144篇
  2005年   135篇
  2004年   144篇
  2003年   100篇
  2002年   95篇
  2001年   57篇
  2000年   83篇
  1999年   63篇
  1998年   29篇
  1997年   22篇
  1996年   22篇
  1995年   17篇
  1994年   20篇
  1993年   30篇
  1992年   37篇
  1991年   38篇
  1990年   36篇
  1989年   28篇
  1988年   26篇
  1987年   19篇
  1986年   20篇
  1985年   20篇
  1984年   26篇
  1983年   24篇
  1982年   22篇
  1981年   19篇
  1979年   18篇
  1978年   14篇
  1977年   19篇
  1974年   16篇
  1973年   22篇
  1972年   17篇
  1969年   23篇
  1968年   12篇
排序方式: 共有3553条查询结果,搜索用时 15 毫秒
81.
The hermaphroditic marine snail species Haminella solitaria was formerly included in the genus Haminoea, but it was recently assigned to the genus Haminella. The copulatory apparatus in H. solitaria was investigated by light and transmission electron microscopy to obtain additional information about this apparatus in cephalaspidean gastropods and to evaluate the taxonomic relevance of its morphofunctional features in the framework of a new phylogenetic tree of the family Haminoeidae. The copulatory apparatus in H. solitaria consisted of the atrium with a muscular wall and papilla, a seminal duct, and a single‐lobed prostate. Epithelial and subepithelial secretory cells were detected in the proximal and middle region of the atrium wall, and a third type of secretory cell occurred in the distal region of the muscular papilla. The seminal duct was lined by ciliated cells and its muscular wall included some vacuolar cells. The prostate in H. solitaria consisted of lateral pouches surrounding a large central lumen that was filled with spermatozoa. A single type of secretory cell intermingled with ciliated cells formed the epithelium of the prostate. A histological comparison between the copulatory apparatus in H. solitaria and Haminoea navicula revealed substantial differences that support the placement of these two species in different genera, as established by recent molecular studies.  相似文献   
82.
Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.  相似文献   
83.
Dark, that is, nonphototrophic, microbial CO2 fixation occurs in a large range of soils. However, it is still not known whether dark microbial CO2 fixation substantially contributes to the C balance of soils and what factors control this process. Therefore, the objective of this study was to quantitate dark microbial CO2 fixation in temperate forest soils, to determine the relationship between the soil CO2 concentration and dark microbial CO2 fixation, and to estimate the relative contribution of different microbial groups to dark CO2 fixation. For this purpose, we conducted a 13C‐CO2 labeling experiment. We found that the rates of dark microbial CO2 fixation were positively correlated with the CO2 concentration in all soils. Dark microbial CO2 fixation amounted to up to 320 µg C kg?1 soil day?1 in the Ah horizon. The fixation rates were 2.8–8.9 times higher in the Ah horizon than in the Bw1 horizon. Although the rates of dark microbial fixation were small compared to the respiration rate (1.2%–3.9% of the respiration rate), our findings suggest that organic matter formed by microorganisms from CO2 contributes to the soil organic matter pool, especially given that microbial detritus is more stable in soil than plant detritus. Phospholipid fatty acid analyses indicated that CO2 was mostly fixed by gram‐positive bacteria, and not by fungi. In conclusion, our study shows that the dark microbial CO2 fixation rate in temperate forest soils increases in periods of high CO2 concentrations, that dark microbial CO2 fixation is mostly accomplished by gram‐positive bacteria, and that dark microbial CO2 fixation contributes to the formation of soil organic matter.  相似文献   
84.
This article aimed to review animal models of antifungals and identifies human literature to assess if the extrapolation of results is reliable. Animal studies have helped identify area under the concentration curve to minimum inhibitory concentration ratio targets for new drugs and formulations such as isavuconazole and delayed-release posaconazole that have translated to successful outcomes in humans. Models have also been influential in the identification of possible combination therapies for the treatment of aspergillosis, such as voriconazole and echinocandins. However, challenges are endured with animal models when it comes to replicating the pharmacokinetics of humans which has been exemplified with the newest itraconazole formulation. Additionally, animal models have displayed a survival benefit with the use of iron chelators and amphotericin for mucormycosis which was not demonstrated in humans. Animal models have been a staple in the development and optimization of antifungal agents. They afford the ability to investigate uncommon diseases, such as invasive fungal infections, that would otherwise take years and many resources to complete. Although there are many benefits of animal models, there are also shortcomings. This is why the reliability of extrapolating data from animal models to humans is often scrutinized.  相似文献   
85.
Physcomitrella patens is a bryophyte model plant that is often used to study plant evolution and development. Its resources are of great importance for comparative genomics and evo‐devo approaches. However, expression data from Physcomitrella patens were so far generated using different gene annotation versions and three different platforms: CombiMatrix and NimbleGen expression microarrays and RNA sequencing. The currently available P. patens expression data are distributed across three tools with different visualization methods to access the data. Here, we introduce an interactive expression atlas, Physcomitrella Expression Atlas Tool (PEATmoss), that unifies publicly available expression data for P. patens and provides multiple visualization methods to query the data in a single web‐based tool. Moreover, PEATmoss includes 35 expression experiments not previously available in any other expression atlas. To facilitate gene expression queries across different gene annotation versions, and to access P. patens annotations and related resources, a lookup database and web tool linked to PEATmoss was implemented. PEATmoss can be accessed at https://peatmoss.online.uni-marburg.de  相似文献   
86.
87.
Since historical times, the inherent human fascination with pearls turned the freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758) into a highly valuable cultural and economic resource. Although pearl harvesting in M. margaritifera is nowadays residual, other human threats have aggravated the species conservation status, especially in Europe. This mussel presents a myriad of rare biological features, e.g. high longevity coupled with low senescence and Doubly Uniparental Inheritance of mitochondrial DNA, for which the underlying molecular mechanisms are poorly known. Here, the first draft genome assembly of M. margaritifera was produced using a combination of Illumina Paired-end and Mate-pair approaches. The genome assembly was 2.4 Gb long, possessing 105,185 scaffolds and a scaffold N50 length of 288,726 bp. The ab initio gene prediction allowed the identification of 35,119 protein-coding genes. This genome represents an essential resource for studying this species’ unique biological and evolutionary features and ultimately will help to develop new tools to promote its conservation.  相似文献   
88.
Cation exchange chromatography (CEX) is an essential part of most monoclonal antibody (mAb) purification platforms. Process characterization and root cause investigation of chromatographic unit operations are performed using scale down models (SDM). SDM chromatography columns typically have the identical bed height as the respective manufacturing-scale, but a significantly reduced inner diameter. While SDMs enable process development demanding less material and time, their comparability to manufacturing-scale can be affected by variability in feed composition, mobile phase and resin properties, or dispersion effects depending on the chromatography system at hand. Mechanistic models can help to close gaps between scales and reduce experimental efforts compared to experimental SDM applications. In this study, a multicomponent steric mass-action (SMA) adsorption model was applied to the scale-up of a CEX polishing step. Based on chromatograms and elution pool data ranging from laboratory- to manufacturing-scale, the proposed modeling workflow enabled early identification of differences between scales, for example, system dispersion effects or ionic capacity variability. A multistage model qualification approach was introduced to measure the model quality and to understand the model's limitations across scales. The experimental SDM and the in silico model were qualified against large-scale data using the identical state of the art equivalence testing procedure. The mechanistic chromatography model avoided limitations of the SDM by capturing effects of bed height, loading density, feed composition, and mobile phase properties. The results demonstrate the applicability of mechanistic chromatography models as a possible alternative to conventional SDM approaches.  相似文献   
89.
Human-animal relationships are ubiquitous and diverse across the life span and may be especially salient among children and adolescents. However, there is little information regarding whether human-animal interaction (HAI) is actually linked to young people's positive development in normative, nontherapeutic settings. Therefore, the purpose of this study was to explore if and how HAI may be linked to positive youth development (PYD) using data from the 4-H Study of PYD. Results suggested that emotions and cognitions about animals were related to indices of positive development. The implications of these findings, and suggestions for new areas of inquiry regarding the role of HAI as an important developmental context, are discussed.  相似文献   
90.
Maintaining active zone structure is crucial for synaptic function. In this issue of EMBO reports, NMNAT is shown to act as a chaperone that protects the active zone structural protein Bruchpilot from degradation.EMBO reports (2013) 14 1, 87–94 doi:10.1038/embor.2012.181Synapses perform several tasks independently from the cell body of the neuron, including synaptic vesicle recycling through endocytosis or local protein maturation and degradation. Failure to regulate protein function locally is detrimental to the nervous system as evidenced by neuronal dysfunctions that arise as a consequence of synaptic ageing. This relative synaptic autonomy comes with a need for mechanisms that ensure correct protein (re)folding, and there is accumulating evidence that key chap-erones have a central role in the regulation and maintenance of synaptic structural integrity and function [1]. Work by Grace Zhai''s group, published in this issue of EMBO reports, demonstrates a key role of the Drosophila nicotinamide mononucleotide adenylyltransferase (NMNAT) chaperone in the protection of active zone components against activity-induced degeneration (Fig 1; [2]).Open in a separate windowFigure 1Results reported by Zang and colleagues [2] reveal a specific role of nicotinamide mononucleotide adenylyltransferase (NMNAT) in preserving active zone structure against use-dependent decline. This protection is exerted by direct interaction with BRP and protection of this key structural protein against ubiquitination and subsequent degradation. BRP, Bruchpilot; Ub, ubiquitin.Active zones, the specialized sites for neurotransmitter release at presynaptic terminals, are characterized by a dense protein network called the cytomatrix at the active zone (CAZ). The protein machinery of the CAZ is responsible for efficient synaptic vesicle tethering, docking and fusion with the presynaptic membrane and, thus, for reliable signal transmission from the neuron to the postsynaptic cell. Clearly, proteins in the CAZ are tightly regulated, especially in response to external cues such as synaptic activity [3,4]. Yet, this particularly crowded protein environment might be favourable for the formation of non-functional—and sometimes toxic—protein aggregates. Chaperones that act at the synapse reduce the probability of crucial protein aggregation by preventing and reverting these inappropriate interactions, which happen as a result of environmental stress.One of these chaperones, the Drosophila neuroprotective NMNAT, was identified in a genetic screen for factors involved in synapse function [5]. Its chaperone activity was later confirmed by using in vitro and in vivo protein folding assays [6]. NMNAT null mutants show severe and early onset neurodegeneration, whereas neurodevelopment does not seem to be strongly affected. Interestingly, degeneration of photoreceptors lacking NMNAT can be significantly attenuated by limiting synaptic activity, either by rearing flies in the dark or by introducing the no receptor potential A (norpA) mutation that blocks phototransduction [5]. These results indicate that NMNAT protects adult neurons from activity-induced degeneration.In this issue of EMBO reports, Zang and colleagues report a role for NMNAT at the synapse. They observed that loss or reduced levels of NMNAT leads to a concomitant loss of several synaptic markers including cysteine-string protein (CSP), synaptotagmin and the active zone structural protein Bruchpilot (BRP). Remarkably, BRP was the only one of these proteins found to co-immunoprecipitate with NMNAT from brain lysates. Both proteins show approximately 50% co-localization at the neuromuscular junction when imaged by 3D-SIM super-resolution microscopy, suggesting that NMNAT might act directly as a chaperone for maintaining a functional BRP conformation.Consistent with a protective role of NMNAT against BRP degradation, RNA interference-mediated NMNAT knockdown leads to BRP ubiquitination, whereas this modification was not detected in control brain lysates. Given the involvement of the ubiquitin proteasome pathway in regulating synaptic development and function [1], the authors tested the effect of the proteasome inhibitor MG-132 on BRP ubiquitination. They observed an increased level of BRP ubiquitination in wild-type flies fed with this drug, suggesting a role for the proteasome in the clearance of ubiquitinated BRP. By contrast, overexpression of NMNAT reduces the level of BRP ubiquitination both in the absence and the presence of MG-132, providing further evidence for the protective role of this chaperone against ubiquitination of BRP (Fig 1).a key role of the […] nicotinamide mononucleotide adenylyltransferase (NMNAT) chaperone in the protection of active zone components against activity-induced degenerationBRP is a cytoskeletal-like protein that is an integral component of T-bars—electron-dense structures that project from the presynaptic membrane and around which synaptic vesicles cluster. In agreement with a protective role of NMNAT against BRP ubiquitination, reduced levels of this chaperone give rise to a marked decrease in T-bar size in an age-dependent manner (Fig 1). Active zones are known to show dynamic changes in response to synaptic activity, and NMNAT was previously reported to protect photoreceptors against activity-induced degeneration [5]. The authors thus tested the effect of minimizing photoreceptor activity on active zone structure by keeping flies in the dark or inhibiting phototransduction by means of the norpA mutation. Both manipulations largely reversed the effect of NMNAT knockdown on T-bar size. Absence of light exposure also significantly reduced the amount of BRP that co-immunoprecipitates with NMNAT, indicating that neuronal activity regulates NMNAT–BRP interaction. Further experiments are needed to examine whether there is a positive correlation between synaptic activity and BRP ubiquitination levels, and whether NMNAT can indeed keep T-bar structure intact by protecting BRP against this modification under conditions of high synaptic activity.Finally, the study shows that reduced NMNAT levels not only caused a loss of BRP from the synapse but also a specific mislocalization of this protein to the cell body, where it accumulates in clusters together with the remaining NMNAT protein. Under these conditions BRP co-immunoprecipitated with the stress-induced Hsp70, a chaperone classically used as a marker for protein aggregation. It is still unclear whether these BRP clusters form as a result of defective anterograde trafficking and/or of enhanced retrograde transport of BRP. In the absence of light stimulation T-bars are properly assembled in nmnat null photoreceptors, but at this stage a role of NMNAT in regulating the axonal transport of BRP under conditions of normal synaptic activity cannot be excluded. Noticeably, two independent recent reports show involvement of NMNAT in mitochondrial mobility [7,8].As BRP and NMNAT co-localize and interact with one another, the simplest model that accounts for all the observations by Zang et al is that NMNAT directly prevents activity-induced ubiquitination of BRP and subsequent degradation. Yet, as its name indicates, this chaperone is an essential enzyme in NAD synthesis. It was previously shown by the Bellen lab that mutant versions of NMNAT, impaired for NAD production, rescue photoreceptor degeneration caused by loss of NMNAT [5]. This strongly suggests that NAD production is not required for stabilization of BRP but this might need further scrutiny [9].…reduced levels of this chaperone [NMNAT] give rise to a marked decrease in T-bar sizeWhile providing further insights into the role of NMNAT at the active zone in Drosophila, the paper by Zang et al might also have important implications for neurodegeneration in mammals. When ectopically expressed in mice, Nmnat has a protective role against Wallerian degeneration, that is, synapse and axon degeneration that rapidly occurs distal from an axonal wound in wild-type animals. This process is significantly delayed in mice overexpressing a chimaeric protein consisting of the amino-terminal 70 residues of the ubiquitination factor E4B (Ube4b) fused through a linker to Nmnat1, known as the Wallerian degeneration slow (Wlds) protein. Conversely, mutations in the human NMNAT1 gene were characterized in several families with Leber congenital amaurosis—a severe, early-onset neurodegenerative disease of the retina [10,11,12,13]. As Wlds or Nmnat1 overexpression protects axons from degeneration in various disease models [9], Nmnat1 emerges as a promising candidate for developing protective strategies against axonal degeneration in peripheral neuropathies such as amyotrophic lateral sclerosis but also in glaucoma, AIDS and other diseases [9].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号