首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   783篇
  免费   72篇
  国内免费   1篇
  2024年   3篇
  2022年   4篇
  2021年   8篇
  2020年   10篇
  2019年   8篇
  2018年   7篇
  2017年   9篇
  2016年   17篇
  2015年   36篇
  2014年   40篇
  2013年   46篇
  2012年   62篇
  2011年   53篇
  2010年   34篇
  2009年   27篇
  2008年   38篇
  2007年   49篇
  2006年   53篇
  2005年   47篇
  2004年   45篇
  2003年   43篇
  2002年   40篇
  2001年   16篇
  2000年   17篇
  1999年   9篇
  1998年   9篇
  1997年   17篇
  1996年   9篇
  1995年   10篇
  1994年   7篇
  1993年   7篇
  1992年   9篇
  1991年   9篇
  1990年   6篇
  1989年   4篇
  1988年   7篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1981年   4篇
  1978年   2篇
  1977年   2篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1968年   2篇
  1965年   1篇
排序方式: 共有856条查询结果,搜索用时 15 毫秒
81.
Cytokinins inhibit hypocotyl elongation in darkness but have no obvious effect on hypocotyl length in the light. However, we found that cytokinins do promote hypocotyl elongation in the light when ethylene action is blocked. A 50% increase in Arabidopsis thaliana (L.) Heynh. hypocotyl length was observed in response to N6-benzyladenine (BA) treatment in the presence of Ag+. The level of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid was strongly increased, indicating that ethylene biosynthesis was up-regulated by treatment with cytokinin. Furthermore, the effects of cytokinins on hypocotyl elongation were also tested using a series of mutants in the cascade of the ethylene-signal pathway. In the ethylene-insensitive mutants etr1-3 and ein2-1, cytokinin treatment resulted in hypocotyl lengths comparable to those of wild-type seedlings treated with both Ag+ and BA. A similar phenotypical response to cytokinin was observed when auxin transport was blocked by -naphthylphthalamic acid (NPA). Applied cytokinin largely restored cell elongation in the basal and middle parts of the hypocotyls of NPA-treated seedlings and at the same time abolished the NPA-induced decrease in indole-3-acetic acid levels. Our data support the hypothesis that, in the light, cytokinins interact with the ethylene-signalling pathway and conditionally up-regulate ethylene and auxin synthesis.  相似文献   
82.
The importance of plant hormones in clubroot infection has long been recognized. The morphological changes, such as cell division and cell elongation leading to gall formation are triggered in the early stages of infection. We analysed cell expansion by localizing Xyloglucan endoTransglucosylase/Hydrolase (XTH)-action and screened the endogenous concentrations of several classes of phytohormones by mass spectrometry in the early stages of Plasmodiophora brassicae infection in Chinese cabbage (Brassica rapa spp. pekinensis). Infected plants showed a general transient growth promotion early in infection. Furthermore a clear XTH action was visible in the epidermal layer of infected roots. Complex changes in the endogenous phytohormone profile were observed. Initially infection resulted in an increased total auxin pool. The auxin increase, together with an increased XTH action, results in wall loosening and consequently cell expansion. When the first secondary plasmodia are formed, thirteen days after infection (DAI), can be considered a switch point in phytohormone metabolism. Twenty-one DAI the plasmodia might act as a plant hormone sink resulting in a reduction in the active cytokinin pool and a lower indole-3-acetic acid content in the infected plants.  相似文献   
83.
Summary The accumulation and proliferation of vascular smooth muscle cells (VSMC) within the vessel wall is an important pathogenic feature in the development of atherosclerosis. Glucose metabolism has been implicated to play an important role in this cellular mechanism. To further elucidate the role of glucose metabolism in atherogenesis, glycolysis and its regulation have been investigated in proliferating VSMC. Platelet derived growth factor (PDGF BB)-induced proliferation of VSMCs significantly stimulated glucose flux through glycolysis. Further evaluating the enzymatic regulation of this pathway, the analysis of flux:metabolite co-responses revealed that anaerobic glycolytic flux is controlled at different sites of gycolysis in proliferating VSMCs, being consistent with the concept of multisite modulation. These findings indicate that regulation of glycolytic flux in proliferating VSMCs differs from traditional concepts of metabolic control of the Embden–Meyerhof pathway.  相似文献   
84.
85.
Here we report on the presence of sulfated lipopolysaccharide molecules in Azospirillum brasilense, a plant growth-promoting rhizosphere bacterium. Chemical analysis provided structural data on the O-antigen composition and demonstrated the possible involvement of the nodPQ genes in O-antigen sulfation.  相似文献   
86.
Two alternatively spliced Caenorhabditis elegans G protein-coupled receptors, T19F4.1a and T19F4.1b, were cloned and functionally characterized. The T19F4.1b receptor protein is 30 amino acids longer than T19F4.1a, and the difference in amino acid constitution is exclusively conferred to the intracellular C-terminal region, suggesting a potential difference in G protein-coupling specificity. Following cloning of the receptor cDNAs into the pcDNA3 vector and stable or transient transfection into Chinese hamster ovary cells, the aequorin bioluminescence/Ca2+ assay was used to investigate receptor activation. This is the first report of the construction of a cell line stably expressing a C. elegans neuropeptide receptor. Our experiments identified both receptors as being cognate receptors for two FMRFamide-related peptides encoded by the flp-2 precursor: SPREPIRFamide (FLP2-A) and LRGEPIRFamide (FLP2-B). Pharmacological profiling using truncated forms of FLP2-A and -B revealed that the active core of both peptides is EPIRFamide. Screening of peptides encoded by other flps did not result in a significant activation of the receptor. In contrast to other C. elegans receptors tested in heterologous expression systems, the functional activation of both T19F4.1a and T19F4.1b was not temperature-dependent. Screening in cells lacking the promiscuous Galpha16 suggests that T19F4.1a and b are both linked to the Gq pathway.  相似文献   
87.
The meningococcal class I outer membrane protein porin A plays an important role in the development of T cell-dependent protective immunity against meningococcal serogroup B infection and is therefore a major component of candidate meningococcal vaccines. T cell epitopes from porin A are poorly characterized because of weak in vitro memory T cell responses against purified Ag and strain variation. We applied a novel strategy to identify relevant naturally processed and MHC class II-presented porin A epitopes, based on stable isotope labeling of Ag. Human immature HLA-DR1-positive dendritic cells were used for optimal uptake and MHC class II processing of (14)N- and (15)N-labeled isoforms of the neisserial porin A serosubtype P1.5-2,10 in bacterial outer membrane vesicles. HLA-DR1 bound peptides, obtained after 48 h of Ag processing, contained typical spectral doublets in mass spectrometry that could easily be assigned to four porin A regions, expressed at diverging densities ( approximately 30-4000 copies/per cell). Epitopes from two of these regions are recognized by HLA-DR1-restricted CD4(+) T cell lines and are conserved among different serosubtypes of meningococcal porin A. This mass tag-assisted approach provides a useful methodology for rapid identification of MHC class II presented bacterial CD4(+) T cell epitopes relevant for vaccine development.  相似文献   
88.
The potassium channel KcsA forms an extremely stable tetramer. Despite this high stability, it has been shown that the membrane-mimicking solvent 2,2,2-trifluoroethanol (TFE) can induce tetramer dissociation [Valiyaveetil, F. I., et al. (2002) Biochemistry 41, 10771-7, and Demmers, J. A. A., et al. (2003) FEBS Lett. 541, 69-77]. Here we have studied the effect of TFE on the structure and oligomeric state of the KcsA tetramer, reconstituted in different lipid systems. It was found that TFE changes the secondary and tertiary structure of KcsA and that it can dissociate the KcsA tetramer in all systems used. The tetramer is stabilized by a lipid bilayer as compared to detergent micelles. The extent of stabilization was found to depend on the nature of the lipids: a strong stabilizing effect of the nonbilayer lipid phosphatidylethanolamine (PE) was observed, but no effect of the charged phoshosphatidylglycerol (PG) as compared to phosphatidylcholine (PC) was found. To understand how lipids stabilize KcsA against TFE-induced tetramer dissociation, we also studied the effect of TFE on the bilayer organization in the various lipid systems, using (31)P and (2)H NMR. The observed lipid dependency was similar as was found for tetramer stabilization: PE increased the bilayer stability as compared to PC, while PG behaved similar to PC. Furthermore, it was found that TFE has a large effect on the acyl chain ordering. The results indicate that TFE inserts primarily in the membrane interface. We suggest that the lipid bilayer stabilizes the KcsA tetramer by the lateral pressure in the acyl chain region and that this stabilizing effect increases when a nonbilayer lipid like PE is present.  相似文献   
89.
Apolipoprotein (apo) A-I is thought to undergo a conformational change during lipid association that results in the transition of random coil to alpha-helix. Using a series of deletion mutants lacking different regions along the molecule, we examined the contribution of alpha-helix formation in apoA-I to the binding to egg phosphatidylcholine (PC) small unilamellar vesicles (SUV). Binding isotherms determined by gel filtration showed that apoA-I binds to SUV with high affinity and deletions in the C-terminal region markedly decrease the affinity. Circular dichroism measurements demonstrated that binding to SUV led to an increase in alpha-helix content, but the helix content was somewhat less than in reconstituted discoidal PC.apoA-I complexes for all apoA-I variants, suggesting that the helical structure of apoA-I on SUV is different from that in discs. Isothermal titration calorimetry showed that the binding of apoA-I to SUV is accompanied by a large exothermic heat and deletions in the C-terminal regions greatly decrease the heat. Analysis of the rate of release of heat on binding, as well as the kinetics of quenching of tryptophan fluorescence by brominated PC, indicated that the opening of the N-terminal helix bundle is a rate-limiting step in apoA-I binding to the SUV surface. Significantly, the correlation of thermodynamic parameters of binding with the increase in the number of helical residues revealed that the contribution of alpha-helix formation upon lipid binding to the enthalpy and the free energy of the binding of apoA-I is -1.1 and -0.04 kcal/mol per residue, respectively. These results indicate that alpha-helix formation, especially in the C-terminal regions, provides the energetic source for high affinity binding of apoA-I to lipids.  相似文献   
90.
The mannose-specific plant lectins from the Amaryllidaceae family (e.g., Hippeastrum sp. hybrid and Galanthus nivalis) inhibit human immunodeficiency virus (HIV) infection of human lymphocytic cells in the higher nanogram per milliliter range and suppress syncytium formation between persistently HIV type 1 (HIV-1)-infected cells and uninfected CD4(+) T cells. These lectins inhibit virus entry. When exposed to escalating concentrations of G. nivalis and Hippeastrum sp. hybrid agglutinin, a variety of HIV-1(III(B)) strains were isolated after 20 to 40 subcultivations which showed a decreased sensitivity to the plant lectins. Several amino acid changes in the envelope glycoprotein gp120, but not in gp41, of the mutant virus isolates were observed. The vast majority of the amino acid changes occurred at the N glycosylation sites and at the S or T residues that are part of the N glycosylation motif. The degree of resistance to the plant lectins was invariably correlated with an increasing number of mutated glycosylation sites in gp120. The nature of these mutations was entirely different from that of mutations that are known to appear in HIV-1 gp120 under the pressure of other viral entry inhibitors such as dextran sulfate, bicyclams (i.e., AMD3100), and chicoric acid, which also explains the lack of cross-resistance of plant lectin-resistant viruses to any other HIV inhibitor including T-20 and the blue-green algae (cyanobacteria)-derived mannose-specific cyanovirin. The plant lectins represent a well-defined class of anti-HIV (microbicidal) drugs with a novel HIV drug resistance profile different from those of other existing anti-HIV drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号