排序方式: 共有809条查询结果,搜索用时 15 毫秒
91.
Peroxynitrite formation and function in plants 总被引:1,自引:0,他引:1
Peroxynitrite (ONOO−) is a reactive nitrogen species formed when nitric oxide (NO) reacts with the superoxide anion (O2−). It was first identified as a mediator of cell death in animals but was later shown to act as a positive regulator of cell signaling, mainly through the posttranslational modification of proteins by tyrosine nitration. In plants, peroxynitrite is not involved in NO-mediated cell death and its physiological function is poorly understood. However, it is emerging as a potential signaling molecule during the induction of defense responses against pathogens and this could be mediated by the selective nitration of tyrosine residues in a small number of proteins. In this review we discuss the general role of tyrosine nitration in plants and evaluate recent evidence suggesting that peroxynitrite is an effector of NO-mediated signaling following pathogen infection. 相似文献
92.
Johanna Marin‐Carbonne Vincent Busigny Jennyfer Miot Claire Rollion‐Bard Elodie Muller Nadja Drabon Damien Jacob Sylvain Pont Martin Robyr Tomaso R. R. Bontognali Camille Franois Stephanie Reynaud Mark Van Zuilen Pascal Philippot 《Geobiology》2020,18(3):306-325
On the basis of phylogenetic studies and laboratory cultures, it has been proposed that the ability of microbes to metabolize iron has emerged prior to the Archaea/Bacteria split. However, no unambiguous geochemical data supporting this claim have been put forward in rocks older than 2.7–2.5 giga years (Gyr). In the present work, we report in situ Fe and S isotope composition of pyrite from 3.28‐ to 3.26‐Gyr‐old cherts from the upper Mendon Formation, South Africa. We identified three populations of microscopic pyrites showing a wide range of Fe isotope compositions, which cluster around two δ56Fe values of ?1.8‰ and +1‰. These three pyrite groups can also be distinguished based on the pyrite crystallinity and the S isotope mass‐independent signatures. One pyrite group displays poorly crystallized pyrite minerals with positive Δ33S values > +3‰, while the other groups display more variable and closer to 0‰ Δ33S values with recrystallized pyrite rims. It is worth to note that all the pyrite groups display positive Δ33S values in the pyrite core and similar trace element compositions. We therefore suggest that two of the pyrite groups have experienced late fluid circulations that have led to partial recrystallization and dilution of S isotope mass‐independent signature but not modification of the Fe isotope record. Considering the mineralogy and geochemistry of the pyrites and associated organic material, we conclude that this iron isotope systematic derives from microbial respiration of iron oxides during early diagenesis. Our data extend the geological record of dissimilatory iron reduction (DIR) back more than 560 million years (Myr) and confirm that micro‐organisms closely related to the last common ancestor had the ability to reduce Fe(III). 相似文献
93.
94.
Emilie Blanc Patrick Wagner Fabrice Plaisier Martine Schmitt Thierry Durroux Jean-Jacques Bourguignon Michel Partiseti Elodie Dupuis Frederic Bihel 《Analytical biochemistry》2015
Ligand-gated ion channels (LGICs) are considered as attractive protein targets in the search for new therapeutic agents. Nowadays, this strategy involves the capability to screen large chemical libraries. We present a new Tag-lite ligand binding assay targeting LGICs on living cells. This technology combines the use of suicide enzyme tags fused to channels of interest with homogeneous time-resolved fluorescence (HTRF) as the detection readout. Using the 5-HT3 receptor as system model, we showed that the pharmacology of the HALO-5HT3 receptor was identical to that of the native receptor. After validation of the assay by using 5-HT3 agonists and antagonists of reference, a pilot screen enabled us to identify azelastine, a well-known histamine H1 antagonist, as a potent 5-HT3 antagonist. This interesting result was confirmed with electrophysiological experiments. The method described here is easy to implement and could be applicable for other LGICs, opening new ways for the screening of chemical libraries. 相似文献
95.
Regner M Martinez X Belnoue E Sun CM Boisgerault F Lambert PH Leclerc C Siegrist CA 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(4):2669-2674
Neonatal cytotoxic T cell responses have only been elicited to date with immunogens or delivery systems inducing potent direct APC activation. To define the minimal activation requirements for the induction of neonatal CD8(+) cytotoxic responses, we used synthetic microspheres (MS) coated with a single CD8(+) T cell peptide from lymphocytic choriomeningitis virus (LCMV) or HIV-1. Unexpectedly, a single injection of peptide-conjugated MS without added adjuvant induced CD4-dependent Ag-specific neonatal murine cytotoxic responses with adult-like CTL precursor frequency, avidity for Ag, and frequency of IFN-gamma-secreting CD8(+) splenocytes. Neonatal CD8(+) T cell responses to MS-LCMV were elicited within 2 wk of a single immunization and, upon challenge, provided similar protection from viral replication as adult CTLs, demonstrating their in vivo competence. As previously reported, peptide-coated MS elicited no detectable activation of adult CD11c(+) dendritic cells (DC). In contrast, CTL responses were associated with a partial activation of neonatal CD11c(+) DC, reflected by the up-regulation of CD80 and CD86 expression but no concurrent changes in MHC class II or CD40 expression. However, this partial activation of neonatal DC was not sufficient to circumvent the requirement for CD4(+) T cell help. The effective induction of neonatal CD8(+) T cell responses by this minimal Ag delivery system demonstrates that neonatal CD11c(+) DC may mature sufficiently to stimulate naive CD8(+) neonatal T cells, even in the absence of strong maturation signals. 相似文献
96.
TCP Transcription Factors Predate the Emergence of Land Plants 总被引:4,自引:0,他引:4
97.
Overstimulation of PrPC signaling pathways by prion peptide 106-126 causes oxidative injury of bioaminergic neuronal cells 总被引:2,自引:0,他引:2
Pietri M Caprini A Mouillet-Richard S Pradines E Ermonval M Grassi J Kellermann O Schneider B 《The Journal of biological chemistry》2006,281(38):28470-28479
Transmissible spongiform encephalopathies, also called prion diseases, are characterized by neuronal loss linked to the accumulation of PrP(Sc), a pathologic variant of the cellular prion protein (PrP(C)). Although the molecular and cellular bases of PrP(Sc)-induced neuropathogenesis are not yet fully understood, increasing evidence supports the view that PrP(Sc) accumulation interferes with PrP(C) normal function(s) in neurons. In the present work, we exploit the properties of PrP-(106-126), a synthetic peptide encompassing residues 106-126 of PrP, to investigate into the mechanisms sustaining prion-associated neuronal damage. This peptide shares many physicochemical properties with PrP(Sc) and is neurotoxic in vitro and in vivo. We examined the impact of PrP-(106-126) exposure on 1C11 neuroepithelial cells, their neuronal progenies, and GT1-7 hypothalamic cells. This peptide triggers reactive oxygen species overflow, mitogen-activated protein kinase (ERK1/2), and SAPK (p38 and JNK1/2) sustained activation, and apoptotic signals in 1C11-derived serotonergic and noradrenergic neuronal cells, while having no effect on 1C11 precursor and GT1-7 cells. The neurotoxic action of PrP-(106-126) relies on cell surface expression of PrP(C), recruitment of a PrP(C)-Caveolin-Fyn signaling platform, and overstimulation of NADPH-oxidase activity. Altogether, these findings provide actual evidence that PrP-(106-126)-induced neuronal injury is caused by an amplification of PrP(C)-associated signaling responses, which notably promotes oxidative stress conditions. Distorsion of PrP(C) signaling in neuronal cells could hence represent a causal event in transmissible spongiform encephalopathy pathogenesis. 相似文献
98.
99.
Background
Action potentials are thought to be determinant for the induction of long-term synaptic plasticity, the cellular basis of learning and memory. However, neuronal activity does not lead systematically to an action potential but also, in many cases, to synaptic depolarizing subthreshold events. This is particularly exemplified in corticostriatal information processing. Indeed, the striatum integrates information from the whole cerebral cortex and, due to the membrane properties of striatal medium spiny neurons, cortical inputs do not systematically trigger an action potential but a wide range of subthreshold postsynaptic depolarizations. Accordingly, we have addressed the following question: does a brief subthreshold event act as a Hebbian signal and induce long-term synaptic efficacy changes?Methodology/Principal Findings
Here, using perforated patch-clamp recordings on rat brain corticostriatal slices, we demonstrate, that brief (30 ms) subthreshold depolarizing events in quasi-coincidence with presynaptic activity can act as Hebbian signals and are sufficient to induce long-term synaptic plasticity at corticostriatal synapses. This “subthreshold-depolarization dependent plasticity” (SDDP) induces strong, significant and bidirectional long-term synaptic efficacy changes at a very high occurrence (81%) for time intervals between pre- and postsynaptic stimulations (Δt) of −110<Δt<+110 ms. Such subthreshold depolarizations are able to induce robust long-term depression (cannabinoid type-1 receptor-activation dependent) as well as long-term potentiation (NMDA receptor-activation dependent).Conclusion/Significance
Our data show the existence of a robust, reliable and timing-dependent bidirectional long-term plasticity induced by brief subthreshold events paired with presynaptic activity. The existence of a subthreshold-depolarization dependent plasticity extends considerably, beyond the action potential, the neuron''s capabilities to express long-term synaptic efficacy changes. 相似文献100.
Sabine Traver Elodie Scalici Tiffany Mullet Nicolas Molinari Claire Vincens Tal Anahory Samir Hamamah 《PloS one》2015,10(8)
Cell-free DNA (cfDNA) fragments, detected in blood and in other biological fluids, are released from apoptotic and/or necrotic cells. CfDNA is currently used as biomarker for the detection of many diseases such as some cancers and gynecological and obstetrics disorders. In this study, we investigated if cfDNA levels in follicular fluid (FF) samples from in vitro fertilization (IVF) patients, could be related to their ovarian reserve status, controlled ovarian stimulation (COS) protocols and IVF outcomes. Therefore, 117 FF samples were collected from women (n = 117) undergoing IVF/Intra-cytoplasmic sperm injection (ICSI) procedure and cfDNA concentration was quantified by ALU-quantitative PCR. We found that cfDNA level was significantly higher in FF samples from patients with ovarian reserve disorders (low functional ovarian reserve or polycystic ovary syndrome) than from patients with normal ovarian reserve (2.7 ± 2.7 ng/μl versus 1.7 ± 2.3 ng/μl, respectively, p = 0.03). Likewise, FF cfDNA levels were significant more elevated in women who received long ovarian stimulation (> 10 days) or high total dose of gonadotropins (≥ 3000 IU/l) than in women who received short stimulation duration (7–10 days) or total dose of gonadotropins < 3000 IU/l (2.4 ± 2.8 ng/μl versus 1.5 ± 1.9 ng/μl, p = 0.008; 2.2 ± 2.3 ng/μl versus 1.5 ± 2.1 ng/μl, p = 0.01, respectively). Finally, FF cfDNA level was an independent and significant predictive factor for pregnancy outcome (adjusted odds ratio = 0.69 [0.5; 0.96], p = 0.03). In multivariate analysis, the Receiving Operator Curve (ROC) analysis showed that the performance of FF cfDNA in predicting clinical pregnancy reached 0.73 [0.66–0.87] with 88% specificity and 60% sensitivity. CfDNA might constitute a promising biomarker of follicular micro-environment quality which could be used to predict IVF prognosis and to enhance female infertility management. 相似文献