首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   861篇
  免费   89篇
  2024年   1篇
  2023年   7篇
  2022年   14篇
  2021年   33篇
  2020年   18篇
  2019年   16篇
  2018年   28篇
  2017年   19篇
  2016年   38篇
  2015年   57篇
  2014年   53篇
  2013年   82篇
  2012年   83篇
  2011年   79篇
  2010年   52篇
  2009年   49篇
  2008年   76篇
  2007年   58篇
  2006年   36篇
  2005年   30篇
  2004年   24篇
  2003年   20篇
  2002年   15篇
  2001年   5篇
  2000年   3篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   5篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   5篇
  1986年   3篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1980年   2篇
  1978年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1968年   1篇
  1967年   2篇
排序方式: 共有950条查询结果,搜索用时 265 毫秒
91.
The present study examined whether natriuretic peptide expression in the scar of post-myocardial infarcted (MI) rats was derived at least in part by residing myofibroblasts. ANP and BNP mRNA levels were significantly increased in the non-infarcted left ventricle and scar of 1-week post-MI male rats, as compared to the left ventricle of normal rats. The infarct region contained myofibroblasts and contracted cardiac myocytes residing predominantly in the epicardial border zone. In primary passage scar-derived myofibroblasts, alpha-myosin heavy chain mRNA was undetectable, whereas ANP, BNP, as well as adrenomedullin and corin mRNA expression persisted. In 1-3 day cultured primary passage myofibroblasts, prepro-ANP, mature ANP, and BNP staining was observed in the cytoplasm/perinuclear region co-incident with unorganized alpha-smooth muscle actin. Following 4-7 days in culture, myofibroblasts expressed organized alpha-smooth muscle actin filaments. However, natriuretic peptides were predominantly detected in the nucleus and cytoplasm, and thin filaments occupying the perinuclear region were positive for prepro-ANP and BNP. Isoproterenol treatment of first passage scar myofibroblasts increased protein synthesis and induced BNP mRNA expression, whereas ANP mRNA levels remained unchanged. By contrast, neither ANP nor BNP mRNAs were induced following exposure to AII despite increased protein synthesis. These data highlight the novel observation that scar myofibroblasts synthesized ANP, BNP, adrenomedullin, and expressed the pro-convertase corin. Constitutive and sympathetic-driven natriuretic peptide synthesis by myofibroblasts may in part influence reparative fibrosis.  相似文献   
92.
This report describes a new method allowing to measure the three-dimensional forces applied on right and left pedals during cycling. This method is based on a cycle ergometer mounted on a force platform. By recording the forces applied on the force platform and applying the fundamental mechanical equations, it was possible to calculate the instantaneous three-dimensional forces applied on pedals. It was validated by static and dynamic tests. The accuracy of the present system was -7.61 N, -3.37 N and -2.81 N, respectively, for the vertical, the horizontal and the lateral direction when applying a mono-directional force and -4.52 N when applying combined forces. In pedaling condition, the orientation and magnitude of the pedal forces were comparable to the literature. Moreover, this method did not modify the mechanical properties of the pedals and offered the possibility for pedal force measurement with materials often accessible in laboratories. Measurements obtained showed that this method has an interesting potential for biomechanical analyses in cycling.  相似文献   
93.
FLRG and follistatin belong to the family of follistatin proteins involved in the regulation of various biological effects, such as hematopoiesis, mediated by their binding to activin and BMP, both members of the TGFbeta family. To further characterize the function of FLRG, we searched for other possible functional partners using a yeast two-hybrid screen. We identified human fibronectin as a new partner for both FLRG and follistatin. We also demonstrated that their physical interaction is mediated by type I motifs of fibronectin and follistatin domains. We then analyzed the biological consequences of these protein interactions on the regulation of hematopoiesis. For the first time, we associated a biological effect with the regulation of human hematopoietic cell adhesiveness of both the type I motifs of fibronectin and the follistatin domains of FLRG and follistatin. Indeed, we observed a significant and specific dose-dependent increase of cell adhesion to fibronectin in the presence of FLRG or follistatin, using either a human hematopoietic cell line or primary cells. In particular, we observed a significantly increased adhesion of immature hematopoietic precursors (CFC, LTC-IC). Altogether these results highlight a new mechanism by which FLRG and follistatin regulate human hematopoiesis.  相似文献   
94.
The Hexosamine Pathway (HP) is one hypothesis proposed to explain glucose toxicity and the alterations observed during the course of diabetic microvascular complication development. Glucosamine is a precursor of UDP-N-Acetylglucosamine (UDP-GlcNAc), the main product of the HP that has often been used to mimic its activation. The transfer of a UDP-GlcNAc residue onto proteins (O-GlcNAc modification) represents the final step of the HP and is considered as a major mechanism by which this pathway exerts its signalling effects. While it is well accepted that the HP promotes extracellular matrix accumulation in the context of diabetic nephropathy, its involvement in the perturbations of cell cycle progression and hypertrophy of renal cells has been poorly investigated. Nevertheless, in a growing number of studies, the HP and O-GlcNAc modification are emerging as important regulators of cell cycle progression. This review will focus on the role of glucosamine and O-GlcNAc modification in cell cycle regulation in the context of diabetic nephropathy. Special emphasis will be given into the role of the HP as a potential mediator of the effects of high glucose on the perturbations of renal cell growth.  相似文献   
95.
Selwa E  Laine E  Malliavin TE 《Proteins》2012,80(4):1028-1040
The catalytic adenyl cyclase (AC) domain of the protein CyaA from Bordetella pertussis is activated by interaction with the C terminal lobe of calmodulin (C-CaM). The AC/C-CaM complex displays an elongated shape, but hydrodynamics measurements on the isolated AC domain allowed to characterize the shape of the protein as spherical. Here, we study by molecular dynamics simulations the complexes between AC and the apo and Ca(2+)-loaded C-CaM, as well as the isolated AC, to characterize the features of AC conformational variability and of AC/C-CaM interaction. The removal of calcium ions from C-CaM increases the AC flexibility, but the removal of C-CaM induces a dramatic drift of the AC conformation. Isolated AC conformations show a general tendency to become less elongated, as the two protein extremities (regions SA and CB) tend to get closer. An analysis of the energetic influences between the C-CaM and the AC regions shows a simple influence scheme, in agreement with the high affinity of AC to CaM. In this scheme, a single influence is observed from C-CaM to the region CA of the AC domain. This influence is correlated to the presence of hydrogen bonds involving residues from C-CaM, and from regions CA, C-terminal tail, and catalytic loop of AC. This study reveals a C-CaM/AC interaction picture where C-CaM stabilizes AC by a steric hindrance on the conformational drift of SA, whereas the Ca(2+) ions allow further stabilization by the establishment of a hydrogen bond network extending from C-CaM to the AC catalytic loop.  相似文献   
96.
97.
Proline accumulation is one of the most common responses of plants to environmental constraints. Thellungiella halophila/salsuginea, a model halophyte, accumulates high levels of proline in response to abiotic stress and in the absence of stress. Recently, lipid signaling pathways have been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. Here we investigated the relationship between lipid signaling enzymes and the level of proline in T. salsuginea. Inhibition of phospholipase C (PLC) enzymes by the specific inhibitor U73122 demonstrated that proline accumulation is negatively controlled by PLCs in the absence of stress and under moderate salt stress (200 mM NaCl). The use of 1-butanol to divert some of the phospholipase D (PLD)-derived phosphatidic acid by transphosphatidylation revealed that PLDs exert a positive control on proline accumulation under severe stress (400 mM NaCl or 400 mM mannitol) but have no effect on its accumulation in non-stress conditions. This experimental evidence shows that positive and negative lipid regulatory components are involved in the fine regulation of proline metabolism. These signaling pathways in T. salsuginea are regulated in the opposite sense to those previously described in A. thaliana, revealing that common signaling components affect the physiology of closely related glycophyte and salt-tolerant plants differently.  相似文献   
98.
99.
100.
There is an immediate need for improved methods to systematically and precisely quantify large sets of peptides in complex biological samples. To date protein quantification in biological samples has been routinely performed on triple quadrupole instruments operated in selected reaction monitoring mode (SRM), and two major challenges remain. Firstly, the number of peptides to be included in one survey experiment needs to be increased to routinely reach several hundreds, and secondly, the degree of selectivity should be improved so as to reliably discriminate the targeted analytes from background interferences. High resolution and accurate mass (HR/AM) analysis on the recently developed Q-Exactive mass spectrometer can potentially address these issues. This instrument presents a unique configuration: it is constituted of an orbitrap mass analyzer equipped with a quadrupole mass filter as the front-end for precursor ion mass selection. This configuration enables new quantitative methods based on HR/AM measurements, including targeted analysis in MS mode (single ion monitoring) and in MS/MS mode (parallel reaction monitoring). The ability of the quadrupole to select a restricted m/z range allows one to overcome the dynamic range limitations associated with trapping devices, and the MS/MS mode provides an additional stage of selectivity. When applied to targeted protein quantification in urine samples and benchmarked with the reference SRM technique, the quadrupole-orbitrap instrument exhibits similar or better performance in terms of selectivity, dynamic range, and sensitivity. This high performance is further enhanced by leveraging the multiplexing capability of the instrument to design novel acquisition methods and apply them to large targeted proteomic studies for the first time, as demonstrated on 770 tryptic yeast peptides analyzed in one 60-min experiment. The increased quality of quadrupole-orbitrap data has the potential to improve existing protein quantification methods in complex samples and address the pressing demand of systems biology or biomarker evaluation studies.Shotgun proteomics has emerged over the past decade as the most effective method for the qualitative study of complex proteomes (i.e., the identification of the protein content), as illustrated by a wealth of publications (1, 2). In this approach, after enzymatic digestion of the proteins, the generated peptides are analyzed by means of liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)1 in a data dependent mode. However, the complexity of the digested proteomes under investigation and the wide range of protein abundances limit the reproducibility and the sensitivity of this stochastic approach (3), which is critical if one aims at the systematic quantification of the proteins. Thus, alternative MS approaches have emerged for the systematic quantitative study of complex proteomes, the MS-based targeted proteomics (4). In this hypothesis-driven approach, only specific subsets of analytes (a few targeted peptides used as surrogates for the proteins of interest) are selectively measured in predefined m/z ranges and retention time windows, which overcomes the bias toward most abundant compounds commonly observed with shotgun proteomics. When applied to complex biological samples—for example, bodily fluids such as urine or plasma—targeted proteomics requires high performance instruments allowing measurements of a wide dynamic range (many orders of magnitude), with high sensitivity in order to detect peptides in the low amol range and sufficient selectivity to cope with massive biochemical background (5). Selected reaction monitoring (SRM) on triple quadrupole (6) or triple quadrupole-linear ion trap mass spectrometers (7) has emerged as a means to conduct such analyses (8). Initially applied in the MS analysis of small molecules (9, 10), SRM has gradually emerged as the reference quantitative technique for analyzing proteins (or peptides) in biological samples. When coupled with the isotope dilution strategy (11, 12), this very effective technique allows the precise quantification of proteins (1318). However, despite the increased selectivity provided by the two-stage mass filtering of SRM (at the precursor and fragment ion levels), the low resolution of mass selection does not allow the systematic removal of interferences (19, 20). Moreover, in proteomics, the biochemical background has a composition similar to that of the analytes of interest, which remains a major hurdle limiting the sensitivity of assays, especially in a bodily fluid matrix. High resolution/accurate mass (HR/AM) analysis represents a promising alternative approach that might more efficiently distinguish the compounds of interest from interferences in targeted proteomics. Such analyses can be conducted on orbitrap-based mass spectrometers because of their high sensitivity and high mass accuracy capabilities (21). The introduction of the benchtop standalone orbitrap mass spectrometer (Exactive) (22) further strengthened the attractiveness of the approach, especially in the field of small molecule analysis (23, 24). However, as quantification using trapping devices intrinsically suffers from a limited dynamic range because of the overall ion capacity, the complexity of biological samples remains very challenging even with the HR/AM approach (25). Targeted protein analysis with triple quadrupole mass spectrometers keeps on showing significant superiority for such samples.2 The recently developed quadrupole-orbitrap mass spectrometer (Q-Exactive) can potentially address this issue.3 It is constituted of an orbitrap mass analyzer equipped with a quadrupole mass filter as the front-end for precursor ion mass selection (26, 27). This configuration combines advantages of triple quadrupole instruments for mass filtering and orbitrap-based mass spectrometers for HR/AM measurement. The ability of the instrument to select a restricted m/z range or (sequentially) a small number of precursor ions offers new opportunities for quantification in complex samples by selectively enriching low abundant components. The resulting data, acquired in the so-called single ion monitoring (SIM) mode, fully benefit from the trapping capability while keeping a high acquisition rate as a result of the fast switching time between targeted precursor ions of the quadrupole. Although this mode of data acquisition is possible with a configuration combining a linear ion trap with the orbitrap (as in the LTQ-Orbitrap mass spectrometer), its effectiveness is far more limited in this case. The quadrupole-orbitrap configuration presents significant benefits by selectively isolating a narrow population of precursor ions. Other features of the instrument include its multiplexed trapping capability (26) using either the C-trap or the higher energy collisional dissociation (HCD) cell (28, 29), which opens new avenues in the design of innovative acquisition methods for quantification studies. For the first time, a panel of acquisition methods is designed and applied to targeted quantification at the MS and MS/MS levels. In the latter case, the simultaneous monitoring of multiple MS/MS fragmentation channels, also called parallel reaction monitoring4 (PRM), is particularly promising for quantifying large sets of peptides with increased selectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号