首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   747篇
  免费   66篇
  813篇
  2024年   1篇
  2023年   7篇
  2022年   15篇
  2021年   33篇
  2020年   15篇
  2019年   15篇
  2018年   25篇
  2017年   17篇
  2016年   32篇
  2015年   55篇
  2014年   52篇
  2013年   77篇
  2012年   77篇
  2011年   73篇
  2010年   48篇
  2009年   46篇
  2008年   69篇
  2007年   50篇
  2006年   30篇
  2005年   27篇
  2004年   22篇
  2003年   12篇
  2002年   13篇
  1998年   1篇
  1994年   1篇
排序方式: 共有813条查询结果,搜索用时 11 毫秒
791.
A series of 1,3-dicarbonyl compounds having 2(3H)-benzazolonic heterocycles has been synthesized and tested for PPARgamma agonist activity. SAR were developed and revealed that 6-acyl-2(3H)-benzothiazolone derivatives with 1,3-dicarbonyl group were the most potent. IP administration of compound 22 exhibited comparable levels of glucose and triglyceride correction to PO administration of rosiglitazone in the ob/ob mouse studies.  相似文献   
792.
Prospects for exosomes in immunotherapy of cancer   总被引:8,自引:0,他引:8  
Exosomes are nanometer sized membrane vesicles invaginating from multivesicular bodies and secreted from epithelial and hematopoietic cells. They were first described "in vitro" but vesicles with the hallmarks of exosomes are present in vivo in germinal centers and biological fluids. Their protein and lipid composition are unique and could account for their expanding functions such as eradication of obsolete proteins, antigen presentation or "Trojan horses" for viruses or prions. Exosome secretion could be a regulated process participating in the transfer of molecules inbetween immune cells. Despite numerous questions pertaining to their biological relevance, the potential of dendritic cell derived-exosomes as cell-free cancer vaccines is currently being assessed. This review will summarize the composition and formation of exosomes, preclinical data, Phase I trials and optimization protocols for improving their immunogenicity in tumor bearing patients.  相似文献   
793.
This study investigates whether a 6-wk intermittent hypoxia training (IHT), designed to avoid reductions in training loads and intensities, improves the endurance performance capacity of competitive distance runners. Eighteen athletes were randomly assigned to train in normoxia [Nor group; n = 9; maximal oxygen uptake (VO2 max) = 61.5 +/- 1.1 ml x kg(-1) x min(-1)] or intermittently in hypoxia (Hyp group; n = 9; VO2 max = 64.2 +/- 1.2 ml x kg(-1) x min(-1)). Into their usual normoxic training schedule, athletes included two weekly high-intensity (second ventilatory threshold) and moderate-duration (24-40 min) training sessions, performed either in normoxia [inspired O2 fraction (FiO2) = 20.9%] or in normobaric hypoxia (FiO2) = 14.5%). Before and after training, all athletes realized 1) a normoxic and hypoxic incremental test to determine VO2 max and ventilatory thresholds (first and second ventilatory threshold), and 2) an all-out test at the pretraining minimal velocity eliciting VO2 max to determine their time to exhaustion (T(lim)) and the parameters of O2 uptake (VO2) kinetics. Only the Hyp group significantly improved VO2 max (+5% at both FiO2, P < 0.05), without changes in blood O2-carrying capacity. Moreover, T(lim) lengthened in the Hyp group only (+35%, P < 0.001), without significant modifications of VO2 kinetics. Despite similar training load, the Nor group displayed no such improvements, with unchanged VO2 max (+1%, nonsignificant), T(lim) (+10%, nonsignificant), and VO2 kinetics. In addition, T(lim) improvements in the Hyp group were not correlated with concomitant modifications of other parameters, including VO2 max or VO2 kinetics. The present IHT model, involving specific high-intensity and moderate-duration hypoxic sessions, may potentialize the metabolic stimuli of training in already trained athletes and elicit peripheral muscle adaptations, resulting in increased endurance performance capacity.  相似文献   
794.
795.
Phosphatidylinositol 3-kinase (PI3K) regulates many cellular functions including growth and survival, and its excessive activation is a hallmark of cancer. Somatostatin, acting through its G protein-coupled receptor (GPCR) sst2, has potent proapoptotic and anti-invasive activities on normal and cancer cells. Here, we report a novel mechanism for inhibiting PI3K activity. Somatostatin, acting through sst2, inhibits PI3K activity by disrupting a pre-existing complex comprising the sst2 receptor and the p85 PI3K regulatory subunit. Surface plasmon resonance and molecular modeling identified the phosphorylated-Y71 residue of a p85-binding pYXXM motif in the first sst2 intracellular loop, and p85 COOH-terminal SH2 as direct interacting domains. Somatostatin-mediated dissociation of this complex as well as p85 tyrosine dephosphorylation correlates with sst2 tyrosine dephosphorylation on the Y71 residue. Mutating sst2-Y71 disabled sst2 to interact with p85 and somatostatin to inhibit PI3K, consequently abrogating sst2's ability to suppress cell survival and tumor growth. These results provide the first demonstration of a physical interaction between a GPCR and p85, revealing a novel mechanism for negative regulation by ligand-activated GPCR of PI3K-dependent survival pathways, which may be an important molecular target for antineoplastic therapy.  相似文献   
796.
797.
Large-scale proteomics applications using SRM analysis on triple quadrupole mass spectrometers present new challenges to LC-MS/MS experimental design. Despite the automation of building large-scale LC-SRM methods, the increased numbers of targeted peptides can compromise the balance between sensitivity and selectivity. To facilitate large target numbers, time-scheduled SRM transition acquisition is performed. Previously published results have demonstrated incorporation of a well-characterized set of synthetic peptides enabled chromatographic characterization of the elution profile for most endogenous peptides. We have extended this application of peptide trainer kits to not only build SRM methods but to facilitate real-time elution profile characterization that enables automated adjustment of the scheduled detection windows. Incorporation of dynamic retention time adjustments better facilitate targeted assays lasting several days without the need for constant supervision. This paper provides an overview of how the dynamic retention correction approach identifies and corrects for commonly observed LC variations. This adjustment dramatically improves robustness in targeted discovery experiments as well as routine quantification experiments.  相似文献   
798.
Cerebral malaria (CM) develops in a small proportion of persons infected with Plasmodium falciparum and accounts for a substantial proportion of the mortality due to this parasite. The actual pathogenic mechanisms are still poorly understood, and in humans investigations of experimental CM are unethical. Using an established Plasmodium berghei-mouse CM model, we have investigated the role of host immune cells at the pathological site, the brain. We report in this study the detailed quantification and characterization of cells, which migrated and sequestered to the brain of mice with CM. We demonstrated that CD8(+) alphabeta T cells, which sequester in the brain at the time when neurological symptoms appear, were responsible for CM mortality. These observations suggest a mechanism which unifies disparate observations in humans.  相似文献   
799.
Atypical antipsychotic drugs such as Olanzapine induce weight gain and metabolic changes associated with the development of type 2 diabetes. The mechanisms underlying the metabolic side-effects of these centrally acting drugs are still unknown to a large extent. We compared the effects of peripheral (intragastric; 3 mg/kg/h) versus central (intracerebroventricular; 30 μg/kg/h) administration of Olanzapine on glucose metabolism using the stable isotope dilution technique (Experiment 1) in combination with low and high hyperinsulinemic-euglycemic clamps (Experiments 2 and 3), in order to evaluate hepatic and extra-hepatic insulin sensitivity, in adult male Wistar rats. Blood glucose, plasma corticosterone and insulin levels were measured alongside endogenous glucose production and glucose disappearance. Livers were harvested to determine glycogen content. Under basal conditions peripheral administration of Olanzapine induced pronounced hyperglycemia without a significant increase in hepatic glucose production (Experiment 1). The clamp experiments revealed a clear insulin resistance both at hepatic (Experiment 2) and extra-hepatic levels (Experiment 3). The induction of insulin resistance in Experiments 2 and 3 was supported by decreased hepatic glycogen stores in Olanzapine-treated rats. Central administration of Olanzapine, however, did not result in any significant changes in blood glucose, plasma insulin or corticosterone concentrations nor in glucose production. In conclusion, acute intragastric administration of Olanzapine leads to hyperglycemia and insulin resistance in male rats. The metabolic side-effects of Olanzapine appear to be mediated primarily via a peripheral mechanism, and not to have a central origin.  相似文献   
800.
Focal adhesion turnover during cell migration is an integrated cyclic process requiring tight regulation of integrin function. Interaction of integrin with its ligand depends on its activation state, which is regulated by the direct recruitment of proteins onto the β integrin chain cytoplasmic domain. We previously reported that ICAP-1α, a specific cytoplasmic partner of β1A integrins, limits both talin and kindlin interaction with β1 integrin, thereby restraining focal adhesion assembly. Here we provide evidence that the calcium and calmodulin-dependent serine/threonine protein kinase type II (CaMKII) is an important regulator of ICAP-1α for controlling focal adhesion dynamics. CaMKII directly phosphorylates ICAP-1α and disrupts an intramolecular interaction between the N- and the C-terminal domains of ICAP-1α, unmasking the PTB domain, thereby permitting ICAP-1α binding onto the β1 integrin tail. ICAP-1α direct interaction with the β1 integrin tail and the modulation of β1 integrin affinity state are required for down-regulating focal adhesion assembly. Our results point to a molecular mechanism for the phosphorylation-dependent control of ICAP-1α function by CaMKII, allowing the dynamic control of β1 integrin activation and cell adhesion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号