首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   18篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1996年   2篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1989年   2篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1975年   2篇
  1974年   1篇
  1958年   1篇
排序方式: 共有97条查询结果,搜索用时 31 毫秒
81.
Esterase (EST) from Pseudomonas putida IFO12996 catalyzes the stereoselective hydrolysis of methyl dl-beta-acetylthioisobutyrate (dl-MATI) to produce d-beta-acetylthioisobutyric acid (DAT), serving as a key intermediate for the synthesis of angiotensin-converting enzyme inhibitors. The EST gene was cloned and expressed in Escherichia coli; the recombinant protein is a non-disulfide-linked homotrimer with a monomer molecular weight of 33,000 in both solution and crystalline states, indicating that these ESTs function as trimers. EST hydrolyzed dl-MATI to produce DAT with a degree of conversion of 49.5% and an enantiomeric excess value of 97.2% at an optimum pH of about 8 to 10 and an optimum temperature of about 57 to 67 degrees C. The crystal structure of EST has been determined by X-ray diffraction to a resolution of 1.6 A, confirming that EST is a member of the alpha/beta hydrolase fold superfamily of enzymes and includes a catalytic triad of Ser97, Asp227, and His256. The active site is located approximately in the middle of the molecule at the end of a pocket approximately 12 A deep. EST can hydrolyze the methyl ester group without affecting the acetylthiol ester moiety in dl-MATI. The examination of substrate specificity of EST toward other linear esters revealed that the enzyme showed specific activity toward methyl esters and that it recognized the configuration at C-2.  相似文献   
82.
A novel peptide, PNP (Pseudocerastes persicus natriuretic peptide), was isolated from the venom of the Iranian viper P. persicus. Amino acid sequencing revealed that the 37-residue peptide belongs to the family of natriuretic peptides. The physiological effects of intra-venously PNP infused into anesthetized rats on urine flow, sodium excretion and blood pressure were comparable to those of atrial natriuretic peptide (ANP). In PC12 cells that were treated with either PNP, ANP, or C-type natriuretic peptide, PNP induced a similar cGMP response as ANP. Since PC12 cells only express the natriuretic peptide receptor (NPR)-A receptor we conclude that PNP binds to the NPR-A receptor. The solution conformation of PNP was characterized using (1)H nuclear magnetic resonance spectroscopy and indicates a high degree of conformational flexibility.  相似文献   
83.
84.
The present study investigatesthe role of two major proteolytic systems in transforming rabbit andrat muscles. The fast-to-slow transformation of rabbit muscle bychronic low-frequency stimulation (CLFS) induces fast-to-slowtransitions of intact, mature fibers and replacement of degeneratingfibers by newly formed slow fibers. Ubiquitination, an indicator of theATP-dependent proteasome system, and calpain activity were measured inhomogenates of control and stimulated extensor digitorum longusmuscles. Calpain activity increased similarly (~2-fold) in stimulatedrat and rabbit muscles. CLFS had no effect on protein ubiquitination inrat muscle but led to elevations in ubiquitin protein conjugates inrabbit muscle. Immunohistochemistry was used to study the distributionof µ-calpain and m-calpain and of ubiquitinated proteins in myosinheavy chain-based fiber types. The findings suggest that bothproteolytic systems are involved in fiber transformation andreplacement. Transforming mature fibers displayed increases inµ-calpain and accumulation of ubiquitin protein conjugates. Themajority of these fibers were identified as type IIA. Enhancedubiquitination was also observed in degenerating and necrotic fibers.Such fibers additionally displayed elevated m-calpain levels.Conversely, p94, the skeletal muscle-specific calpain, decayed rapidlyafter stimulation onset and was hardly detectable after 4 days of CLFS.

  相似文献   
85.

Background

Vibriosis is one of the most ubiquitous fish diseases caused by bacteria belonging to the genus Vibrio such as Vibrio (Listonella) anguillarum. Despite a lot of research efforts, the virulence factors and mechanism of V. anguillarum are still insufficiently known, in part because of the lack of standardized virulence assays.

Methodology/Principal Findings

We investigated and compared the virulence of 15 V. anguillarum strains obtained from different hosts or non-host niches using a standardized gnotobiotic bioassay with European sea bass (Dicentrarchus labrax L.) larvae as model hosts. In addition, to assess potential relationships between virulence and genotypic and phenotypic characteristics, the strains were characterized by random amplified polymorphic DNA (RAPD) and repetitive extragenic palindromic PCR (rep-PCR) analyses, as well as by phenotypic analyses using Biolog’s Phenotype MicroArray™ technology and some virulence factor assays.

Conclusions/Significance

Virulence testing revealed ten virulent and five avirulent strains. While some relation could be established between serotype, genotype and phenotype, no relation was found between virulence and genotypic or phenotypic characteristics, illustrating the complexity of V. anguillarum virulence. Moreover, the standardized gnotobiotic system used in this study has proven its strength as a model to assess and compare the virulence of different V. anguillarum strains in vivo. In this way, the bioassay contributes to the study of mechanisms underlying virulence in V. anguillarum.  相似文献   
86.
The P6 protein of Cauliflower mosaic virus (CaMV) is responsible for the formation of inclusion bodies (IBs), which are the sites for viral gene expression, replication, and virion assembly. Moreover, recent evidence indicates that ectopically expressed P6 inclusion-like bodies (I-LBs) move in association with actin microfilaments. Because CaMV virions accumulate preferentially in P6 IBs, we hypothesized that P6 IBs have a role in delivering CaMV virions to the plasmodesmata. We have determined that the P6 protein interacts with a C2 calcium-dependent membrane-targeting protein (designated Arabidopsis [Arabidopsis thaliana] Soybean Response to Cold [AtSRC2.2]) in a yeast (Saccharomyces cerevisiae) two-hybrid screen and have confirmed this interaction through coimmunoprecipitation and colocalization assays in the CaMV host Nicotiana benthamiana. An AtSRC2.2 protein fused to red fluorescent protein (RFP) was localized to the plasma membrane and specifically associated with plasmodesmata. The AtSRC2.2-RFP fusion also colocalized with two proteins previously shown to associate with plasmodesmata: the host protein Plasmodesmata-Localized Protein1 (PDLP1) and the CaMV movement protein (MP). Because P6 I-LBs colocalized with AtSRC2.2 and the P6 protein had previously been shown to interact with CaMV MP, we investigated whether P6 I-LBs might also be associated with plasmodesmata. We examined the colocalization of P6-RFP I-LBs with PDLP1-green fluorescent protein (GFP) and aniline blue (a stain for callose normally observed at plasmodesmata) and found that P6-RFP I-LBs were associated with each of these markers. Furthermore, P6-RFP coimmunoprecipitated with PDLP1-GFP. Our evidence that a portion of P6-GFP I-LBs associate with AtSRC2.2 and PDLP1 at plasmodesmata supports a model in which P6 IBs function to transfer CaMV virions directly to MP at the plasmodesmata.Through the years, numerous studies have focused on the characterization of viral replication sites within the cell, as well as how plant virus movement proteins (MPs) modify the plasmodesmata to facilitate cell-to-cell movement (for review, see Benitez-Alfonso et al., 2010; Laliberté and Sanfaçon, 2010; Niehl and Heinlein, 2011; Ueki and Citovsky, 2011; Verchot, 2012). It is accepted that plant virus replication is associated with host membranes, and at some point, the viral genomic nucleic acid must be transferred from the site of replication in the cell to the plasmodesmata. This step could involve transport from a distant site within the cell, or alternatively, it may be that replication is coupled with transport at the entrance of the plasmodesmata (Tilsner et al., 2013). However, even with the latter model, there is ample evidence that the viral proteins necessary for replication or cell-to-cell movement utilize intracellular trafficking pathways within the cell to become positioned at the plasmodesma. These pathways may involve microfilaments, microtubules, or specific endomembranes that participate in macromolecular transport pathways, or combinations of these elements (Harries et al., 2010; Schoelz et al., 2011; Patarroyo et al., 2012; Peña and Heinlein, 2012; Tilsner and Oparka 2012; Liu and Nelson, 2013).The P6 protein of Cauliflower mosaic virus (CaMV) is one viral protein that had not been considered to play a role in viral movement until recently. P6 is the most abundant protein component of the amorphous, electron-dense inclusion bodies (IBs) present during virus infection (Odell and Howell, 1980; Shockey et al., 1980). Ectopic expression of P6 in Nicotiana benthamiana leaves resulted in the formation of inclusion-like bodies (I-LBs) that were capable of intracellular movement along actin microfilaments. Furthermore, treatment of Nicotiana edwardsonii leaves with latrunculin B abolished the formation of CaMV local lesions, suggesting that intact microfilaments are required for CaMV infection (Harries et al., 2009a). A subsequent paper showed that P6 physically interacts with Chloroplast Unusual Positioning1 (CHUP1), a plant protein localized to the chloroplast outer membrane that contributes to movement of chloroplasts on microfilaments in response to changes in light intensity (Oikawa et al., 2003, 2008; Angel et al., 2013). The implication was that P6 might hijack CHUP1 to facilitate movement of the P6 IBs on microfilaments. Silencing of CHUP1 in N. edwardsonii, a host for CaMV, slowed the rate of local lesion formation, suggesting that CHUP1 contributes to intracellular movement of CaMV (Angel et al., 2013).In addition to its role in intracellular trafficking, the P6 protein has been shown to have at least four other distinct functions in the viral infection cycle. P6-containing IBs induced during virus infection are likely virion factories, as they are the primary site for CaMV protein synthesis, genome replication, and assembly of virions (Hohn and Fütterer, 1997). Second, P6 interacts with host ribosomes to facilitate reinitiation of translation of genes on the polycistronic 35S viral RNA, a process called translational transactivation (Bonneville et al., 1989; Park et al., 2001; Ryabova et al., 2002). The translational transactivator region of P6 (Fig. 1) defines the essential sequences required for translational transactivation (DeTapia et al., 1993). Third, P6 is an important pathogenicity determinant. P6 functions as an avirulence determinant in some solanaceous and cruciferous species (Daubert et al., 1984; Schoelz et al., 1986; Hapiak et al., 2008) and is a chlorosis symptom determinant in susceptible hosts (Daubert et al., 1984; Baughman et al., 1988; Goldberg et al., 1991; Cecchini et al., 1997). Finally, P6 has the capacity to compromise host defenses, as it is a suppressor of RNA silencing and cell death (Love et al., 2007; Haas et al., 2008), and it modulates signaling by salicylic acid, jasmonic acid, ethylene, and auxin (Geri et al., 2004; Love et al., 2012; Laird et al., 2013). Domain D1 of P6 has been shown to be necessary but not sufficient for suppression of silencing and salicylic acid-mediated defenses (Laird et al., 2013).Open in a separate windowFigure 1.CaMV and host constructs used for confocal microscopy or coimmunoprecipitation (co-IP). A, Structure of CaMV P6 and Arabidopsis (Arabidopsis thaliana) Soybean Response to Cold (AtSRC2.2) proteins. The functions of P6 domains D1 to D4 tested for interaction with AtSRC2.2 are indicated by the shaded boxes. The Mini TAV is the minimal region for the translational transactivation function. The NLSa sequence corresponds to the nuclear localization signal of influenza virus. The NLS sequence corresponds to the nuclear localization signal of human ribosomal protein L22. B, Structure of P6 (Angel et al., 2013), AtSRC2.2, PDLP (Thomas et al., 2008), and CaMV MP fusions developed for confocal microscopy and/or co-IP. aa, Amino acid.Because P6-containing IBs are the site for virion accumulation and they are capable of movement, they may be responsible for delivering virions to the CaMV MP located at the plasmodesmata (for review, see Schoelz et al., 2011). The vast majority of CaMV virions accumulate in association with P6-containing IBs. Furthermore, P6 physically interacts with the CaMV capsid and MP, as well as the two proteins necessary for aphid transmission, P2 and P3 (Himmelbach et al., 1996; Ryabova et al., 2002; Hapiak et al., 2008; Lutz et al., 2012). Recent studies have indicated that P6 IBs serve as a reservoir for virions, in which the virions may be rapidly transferred to P2 electron-lucent IBs for acquisition by aphids (Bak et al., 2013). It stands to reason that P6 IBs may also serve as a reservoir for CaMV virions to be transferred to the CaMV MP in the plasmodesmata.CaMV virions move from cell to cell through plasmodesmata modified into tubules through the function of its MP (Perbal et al., 1993; Kasteel et al., 1996). However, studies have suggested that CaMV virions do not appear to directly interact with the MP. Instead, the MP interacts with the CaMV P3 protein (also known as the virion-associated protein [VAP]), which forms a trimeric structure that is anchored into the virions (Leclerc et al., 1998; Leclerc et al., 2001). Electron microscopy studies have indicated that MP and VAP colocalize with virions only at the entrance to or within the plasmodesmata, and it has been suggested that the VAP/virion complex travels to the plasmodesmata independently from the MP (Stavolone et al., 2005). Consequently, there is a need for a second CaMV protein such as P6 to fulfill the role of delivery of virions to the plasmodesmata (Schoelz et al., 2011).Additional studies have shown that the CaMV MP is incorporated into vesicles and is trafficked on the endomembrane system to reach the plasmodesma (Carluccio et al., 2014). These authors suggest that the CaMV MP is recycled in a vesicular transport pathway between plasmodesmata and early endosome compartments. The CaMV MP interacts with µA-Adaptin (Carluccio et al., 2014) and Movement Protein-Interacting7 (Huang et al., 2001), two proteins shown to have a role in vesicular trafficking. Once the MP arrives at plasmodesmata, it interacts with the Plasmodesmata-Localized Protein (PDLP) proteins, which comprise a family of eight proteins associated with plasmodesmata (Amari et al., 2010). In addition to its interaction with CaMV MP, PDLP1 interacts with the 2B protein of Grapevine fan leaf virus (GFLV) at the base of tubules formed by the 2B protein. Furthermore, an Arabidopsis transfer DNA (T-DNA) mutant line in which three PDLP genes had been knocked out (pdlp1-pdlp2-pdlp3) responded to GFLV and CaMV inoculation with a delayed infection (Amari et al., 2010). This has led to the suggestion that the PDLPs might act as receptors for the MPs of the tubule-forming viruses such as GFLV and CaMV (Amari et al., 2010, 2011).To better understand the function of the P6 protein during CaMV intracellular movement, we have utilized a yeast (Saccharomyces cerevisiae) two-hybrid assay to identify host proteins that interact with CaMV P6. We show that P6 physically interacts with a C2-calcium-dependent protein (designated AtSRC2.2). AtSRC2.2 is a membrane-bound protein that is capable of forming punctate spots associated with plasmodesmata. The localization of AtSRC2.2 with plasmodesmata led to an analysis of interactions between P6 I-LBs, AtSRC2.2, PDLP1, and the CaMV MP and also revealed that a portion of P6 I-LBs are found adjacent to plasmodesmata. These results provide further evidence for a model in which P6 IBs are capable of delivery of virions to plasmodesmata for their transit to other host cells.  相似文献   
87.
In response to agonist stimulation, the alphaIIbbeta3 integrin on platelets is converted to an active conformation that binds fibrinogen and mediates platelet aggregation. This process contributes to both normal hemostasis and thrombosis. Activation of alphaIIbbeta3 is believed to occur in part via engagement of the beta3 cytoplasmic tail with talin; however, the role of the alphaIIb tail and its potential binding partners in regulating alphaIIbbeta3 activation is less clear. We report that calcium and integrin binding protein 1 (CIB1), which interacts directly with the alphaIIb tail, is an endogenous inhibitor of alphaIIbbeta3 activation; overexpression of CIB1 in megakaryocytes blocks agonist-induced alphaIIbbeta3 activation, whereas reduction of endogenous CIB1 via RNA interference enhances activation. CIB1 appears to inhibit integrin activation by competing with talin for binding to alphaIIbbeta3, thus providing a model for tightly controlled regulation of alphaIIbbeta3 activation.  相似文献   
88.
Recent researches on the Lower Jurassic of Western Algeria allow to establish a lithostratigraphic standard correlating the different members and formations developed in the Ouarsenis and Tlemcen Mountains, the Oran High Plains, the Nador and Ksour Mountains. The position of the large bivalve limestones (= Lithiotis limestones) is well established in the different lithologic successions. This facies is widespread in Western Algeria where it is interbedded with brachiopod marker beds, indicating short periods of maximum flooding. The large number of collected brachiopods are distributed into four “faunas” (assemblages) ranging from the Late Sinemurian (= Lotharingian) to the Early Pliensbachian (= Carixian). These faunas have been dated by the age of the species that they have in common with the NW european and western tethyan provinces. These chronological data are confirmed by rare ammonites. All these results evidence the age of the large bivalve facies in Western Algeria. They are contained in the Middle to Late Carixian (Demonense and Dilectum Zones). This datation is in conformity with that known from the Eastern High-Atlas (Bou Dahar). Consequently, the large bivalves cannot be considered as “markers for the unique Domerian” as it has been too often asserted. The palaeontological part of our study shows that the multicostate Zeilleriids (several Tauromenia species from the Late Sinemurian to the Early Carixian) are older than the multicostate Terebratulids (Hesperithyris species from the Middle to Late Carixian).  相似文献   
89.
In this study, the acid-soluble collagen (ASC), extracted from the fish scales of the Caspian white fish (Rutilus Firisikutum) was studied. The thermo-gravimetric analysis (TGA) showed the maximum demineralization accomplished after 48 h of EDTA treatment. SDS-PAGE and FT-IR spectroscopy confirmed that extracted ASC was mainly type I collagen. FE-SEM images confirmed the porous and filamentary structure. The denaturation temperature (Td) of ASC was 19 °C, and the transition heat achieved 9.6 J/g. Collagen self-assembly exhibit important potential because for biomedical applications and green technologies. Various inter- and intra-molecular no-covalent interactions such as hydrogen bonding, hydrophobic, electrostatic and Van der Waals interactions influence the formation of self-assembled collagen. Therefore, critical factors as concentration of ASC, temperature, pH, and ionic strength play crucial role in function integration and structural modulation. The impacts of those external triggers on the kinetic self-assembly of ASC demonstrated a two-phase kinetic process, a sigmoidal plot. ACS showed pronounced self-assembly behavior when temperature and concentration reach above 14 °C and 0.125 mg/ml, higher concentration and/or temperature could stimulate the ASC self-assembly. The optimum pH value for ASC self-assembly was pH = 7. The effect of ionic strength on ASC self-assembly showed the turbidity increases significantly in 131.2 mM salt concentration. The process of self-assembly is mainly driven by thermodynamics. The thermodynamic study of collagen self-assembly illustrated that the activation energy, Ea = 44.3 kJ/mol, the frequency factor, A = 117 × 105 s?1, the enthalpy transition, ΔH? = 42.98 kJ/mol, and the entropy transition, ΔS? = ?0.12 kJ/mol.K, respectively. These findings show that kinetics factors not only influence the self-assembly structure of ASC but also regulate the activation complex structure in the transition state.  相似文献   
90.
The genus Carnobacterium contains nine species, but only C. divergens and C. maltaromaticum are frequently isolated from natural environments and foods. They are tolerant to freezing/thawing and high pressure and able to grow at low temperatures, anaerobically and with increased CO(2) concentrations. They metabolize arginine and various carbohydrates, including chitin, and this may improve their survival in the environment. Carnobacterium divergens and C. maltaromaticum have been extensively studied as protective cultures in order to inhibit growth of Listeria monocytogenes in fish and meat products. Several carnobacterial bacteriocins are known, and parameters that affect their production have been described. Currently, however, no isolates are commercially applied as protective cultures. Carnobacteria can spoil chilled foods, but spoilage activity shows intraspecies and interspecies variation. The responsible spoilage metabolites are not well characterized, but branched alcohols and aldehydes play a partial role. Their production of tyramine in foods is critical for susceptible individuals, but carnobacteria are not otherwise human pathogens. Carnobacterium maltaromaticum can be a fish pathogen, although carnobacteria are also suggested as probiotic cultures for use in aquaculture. Representative genome sequences are not yet available, but would be valuable to answer questions associated with fundamental and applied aspects of this important genus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号