首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   7篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   3篇
  2012年   4篇
  2011年   9篇
  2010年   12篇
  2009年   6篇
  2008年   9篇
  2007年   7篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1973年   3篇
  1957年   3篇
  1955年   2篇
  1951年   1篇
  1948年   1篇
  1947年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
31.
Evidence suggests that chromium supplementation may alleviate symptoms associated with diabetes, such as high blood glucose and lipid abnormalities, yet a molecular mechanism remains unclear. Here, we report that trivalent chromium in the chloride (CrCl3) or picolinate (CrPic) salt forms mobilize the glucose transporter, GLUT4, to the plasma membrane in 3T3-L1 adipocytes. Concomitant with an increase in GLUT4 at the plasma membrane, insulin-stimulated glucose transport was enhanced by chromium treatment. In contrast, the chromium-mobilized pool of transporters was not active in the absence of insulin. Microscopic analysis of an exofacially Myc-tagged enhanced green fluorescent protein-GLUT4 construct revealed that the chromium-induced accumulation of GLUT4-containing vesicles occurred adjacent to the inner cell surface membrane. With insulin these transporters physically incorporated into the plasma membrane. Regulation of GLUT4 translocation by chromium did not involve known insulin signaling proteins such as the insulin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, and Akt. Consistent with a reported effect of chromium on increasing membrane fluidity, we found that chromium treatment decreased plasma membrane cholesterol. Interestingly, cholesterol add-back to the plasma membrane prevented the beneficial effect of chromium on both GLUT4 mobilization and insulin-stimulated glucose transport. Furthermore, chromium action was absent in methyl-beta-cyclodextrin-pretreated cells already displaying reduced plasma membrane cholesterol and increased GLUT4 translocation. Together, these data reveal a novel mechanism by which chromium may enhance GLUT4 trafficking and insulin-stimulated glucose transport. Moreover, these findings at the level of the cell are consistent with in vivo observations of improved glucose tolerance and decreased circulating cholesterol levels after chromium supplementation.  相似文献   
32.
A basis for the insulin mimetic effect of sphingomyelinase on glucose transporter isoform GLUT4 translocation remains unclear. Because sphingomyelin serves as a major determinant of plasma membrane cholesterol and a relationship between plasma membrane cholesterol and GLUT4 levels has recently become apparent, we assessed whether GLUT4 translocation induced by sphingomyelinase resulted from changes in membrane cholesterol content. Exposure of 3T3-L1 adipocytes to sphingomyelinase resulted in a time-dependent loss of sphingomyelin from the plasma membrane and a concomitant time-dependent accumulation of plasma membrane GLUT4. Degradation products of sphingomyelin did not mimic this stimulatory action. Plasma membrane cholesterol amount was diminished in cells exposed to sphingomyelinase. Restoration of membrane cholesterol blocked the stimulatory effect of sphingomyelinase. Increasing concentrations of methyl--cyclodextrin, which resulted in a dose-dependent reversible decrease in membrane cholesterol, led to a dose-dependent reversible increase in GLUT4 incorporation into the plasma membrane. Although increased plasma membrane GLUT4 content by cholesterol extraction with concentrations of methyl--cyclodextrin above 5 mM most likely reflected decreased GLUT4 endocytosis, translocation stimulated by sphingomyelinase or concentrations of methyl--cyclodextrin below 2.5 mM occurred without any visible changes in the endocytic retrieval of GLUT4. Furthermore, moderate loss of cholesterol induced by sphingomyelinase or low concentrations of methyl--cyclodextrin did not alter membrane integrity or increase the abundance of other plasma membrane proteins such as the GLUT1 glucose transporter or the transferrin receptor. Regulation of GLUT4 translocation by moderate cholesterol loss did not involve known insulin-signaling proteins. These data reveal that sphingomyelinase enhances GLUT4 exocytosis via a novel cholesterol-dependent mechanism. vesicular trafficking; signal transduction; sphingolipids  相似文献   
33.
Signals that regulate GLUT4 translocation   总被引:7,自引:0,他引:7  
We have shown that there is a maturational increase in osmotic water permeability (Pf) of rabbit renal brush border membrane vesicles (BBMV). The purpose of the present study was to further investigate the changes in proximal tubule water transport that occur during postnatal development. Diffusional water permeability (PDW) has not been measured directly in adult or neonatal BBMV. We validated the method described by Ye and Verkman (Simultaneous optical measurement of osmotic and diffusional water permeability in cells and liposomes. Biochemistry 28:824-829, 1989) to measure PDW in red cell ghosts and liposomes, to examine the maturational changes in PDW in BBMV. This method utilizes the sensitivity of 8-aminonaphtalene-1,3,6-trisulfonic acid (ANTS) fluorescence to the D2O-H2O content of the solvent. ANTS-loaded neonatal (11 days old) and adult BBMV were rapidly mixed with two volumes of isoosmotic D2O solution using a stopped-flow apparatus at 5 degrees -37 degrees C. PDW was lower in neonatal than adult BBMV at 5 degrees (3.77 +/- 0.34 vs. 5.35 +/- 0.43 mm/sec, respectively, p<0.05) and 20 degrees C (7.03 +/- 0.40 vs. 9.04 +/- 0.25 mm/sec, respectively, p<0.001), but was not different at 30 degrees and 37 degrees C. The activation energy (Ea) was higher in neonatal than in adult BBMV (9.29 +/- 0.56 kcal/mol vs. 6.46 +/- 0.56 kcal/mol, p<0.001). In adult BBMV, PDW was inhibited by 0.5 mM HgCl2 by 46.6 +/- 3.6%, while it was not affected in neonatal BBMV (p<0.001). The results indicate that PDW can be measured in rabbit renal BBMV. There are significant changes in water transport across the apical membrane during postnatal development, consistent with a maturational increase in channel-mediated water transport.  相似文献   
34.
The asexual blood stage of the human malaria parasite Plasmodium falciparum resides within the mature erythrocyte - a cell that has no intracellular organelles and few biosynthetic activities. However, Plasmodium, as on actively growing and dividing cell, has numerous requirements for the uptake o f nutrients and expulsion of waste. Hence, the parasite must extensively remodel the erythrocyte to facilitate its survival, not only by exporting numerous proteins, but also by providing the requisite machinery for their .trafficking. In this review, Heidi Elmendorf and Kastun Haldar propose a model for secretion in P. falciparum.  相似文献   
35.
36.
A scheme of eukaryotic phylogeny has been suggested based on the structure and physical linkage of the RNA triphosphatase and RNA guanylyltransferase enzymes that catalyze mRNA cap formation. Here we show that the unicellular pathogen Giardia lamblia encodes an mRNA capping apparatus consisting of separate triphosphatase and guanylyltransferase components, which we characterize biochemically. We also show that native Giardia mRNAs have blocked 5'-ends and that 7-methylguanosine caps promote translation of transfected mRNAs in Giardia in vivo. The Giardia triphosphatase belongs to the tunnel family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi, microsporidia, and protozoa such as Plasmodium and Trypanosoma. The tunnel enzymes adopt a unique active-site fold and are structurally and mechanistically unrelated to the cysteine-phosphatase-type RNA triphosphatases found in metazoans and plants, which comprise part of a bifunctional triphosphataseguanylyltransferase fusion protein. All available evidence now points to the separate tunnel-type triphosphatase and guanylyltransferase as the aboriginal state of the capping apparatus. We identify a putative tunnel-type triphosphatase and a separate guanylyltransferase encoded by the red alga Cyanidioschyzon merolae. These findings place fungi, protozoa, and red algae in a common lineage distinct from that of metazoa and plants.  相似文献   
37.
38.
Predictions on the consequences of the rapidly increasing atmospheric CO2 levels and associated climate warming for population dynamics, ecological community structure and ecosystem functioning depend on mechanistic energetic models of temperature effects on populations and their interactions. However, such mechanistic approaches combining warming effects on metabolic (energy loss of organisms) and feeding rates (energy gain by organisms) remain a key, yet elusive, goal. Aiming to fill this void, we studied the metabolic rates and functional responses of three differently sized, predatory ground beetles on one mobile and one more resident prey species across a temperature gradient (5, 10, 15, 20, 25 and 30 °C). Synthesizing metabolic and functional‐response theory, we develop novel mechanistic predictions how predator–prey interaction strengths (i.e., functional responses) should respond to warming. Corroborating prior theory, warming caused strong increases in metabolism and decreases in handling time. Consistent with our novel model, we found increases in predator attack rates on a mobile prey, whereas attack rates on a mostly resident prey remained constant across the temperature gradient. Together, these results provide critically important information that environmental warming generally increases the direct short‐term per capita interaction strengths between predators and their prey as described by functional‐response models. Nevertheless, the several fold stronger increase in metabolism with warming caused decreases in energetic efficiencies (ratio of per capita feeding rate to metabolic rate) for all predator–prey interactions. This implies that warming of natural ecosystems may dampen predator–prey oscillations thus stabilizing their dynamics. The severe long‐term implications; however, include predator starvation due to energetic inefficiency despite abundant resources.  相似文献   
39.
The Arctic Warbler Phylloscopus borealis breeds across the northern Palaearctic and northwestern‐most Nearctic, from northern Scandinavia to Alaska, extending south to southern Japan, and winters in Southeast Asia, the Philippines and Indonesia. Several subspecies have been described based on subtle morphological characteristics, although the taxonomy varies considerably among different authors. A recent study (T. Saitoh et al. (2010) BMC Evol. Biol. 10 : 35) identified three main mitochondrial DNA clades, corresponding to: (1) continental Eurasia and Alaska, (2) south Kamchatka, Sakhalin and northeast Hokkaido, and (3) most of Japan (Honshu, Shikoku, Kyushu). These three clades were estimated to have diverged during the late Pliocene to early Pleistocene (border at c. 2.6 million years ago). Differences in morphometrics have also been reported among members of the three clades (T. Saitoh et al. (2008) Ornithol. Sci. 7 : 135–142). Here we analyse songs and calls from throughout the range of the Arctic Warbler, and conclude that these differ markedly and consistently among the populations representing the three mitochondrial clades. Kurile populations, for which no sequence data are available, are shown to belong to the second clade. To determine the correct application of available scientific names, mitochondrial DNA was sequenced from three name‐bearing type specimens collected on migration or in the winter quarters. Based on the congruent variation in mitochondrial DNA, morphology and vocalizations, we propose that three species be recognized: Arctic Warbler Phylloscopus borealis (sensu stricto) (continental Eurasia and Alaska), Kamchatka Leaf Warbler Phylloscopus examinandus (Kamchatka (at least the southern part), Sakhalin, Hokkaido and Kurile Islands), and Japanese Leaf Warbler Phylloscopus xanthodryas (Japan except Hokkaido).  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号