首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   6篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   7篇
  2015年   3篇
  2014年   6篇
  2013年   5篇
  2012年   4篇
  2011年   7篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1992年   4篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1982年   3篇
  1981年   2篇
  1972年   1篇
  1968年   1篇
排序方式: 共有105条查询结果,搜索用时 954 毫秒
71.
The distribution, spatial pattern and population dynamics of a species can be influenced by differences in the environment across its range. Spatial variation in climatic conditions can cause local populations to undergo disruptive selection and ultimately result in local adaptation. However, local adaptation can be constrained by gene flow and may favour resident individuals over migrants—both are factors critical to the assessment of invasion potential. The Natal fruit fly (Ceratitis rosa) is a major agricultural pest in Africa with a history of island invasions, although its range is largely restricted to south east Africa. Across Africa, C. rosa is genetically structured into two clusters (R1 and R2), with these clusters occurring sympatrically in the north of South Africa. The spatial distribution of these genotypic clusters remains unexamined despite their importance for understanding the pest's invasion potential. Here, C. rosa, sampled from 22 South African locations, were genotyped at 11 polymorphic microsatellite loci and assessed morphologically using geometric morphometric wing shape analyses to investigate patterns of population structure and determine connectedness of pest‐occupied sites. Our results show little to no intraspecific (population) differentiation, high population connectivity, high effective population sizes and only one morphological type (R2) within South Africa. The absence of the R1 morphotype at sites where it was previously found may be a consequence of differences in thermal niches of the two morphotypes. Overall, our results suggest high invasion potential of this species, that area‐wide pest management should be undertaken on a country‐wide scale, and that border control is critical to preventing further invasions.  相似文献   
72.
Temperature has dramatic evolutionary fitness consequences and is therefore a major factor determining the geographic distribution and abundance of ectotherms. However, the role that age might have on insect thermal tolerance is often overlooked in studies of behaviour, ecology, physiology and evolutionary biology. Here, we review the evidence for ontogenetic and ageing effects on traits of high- and low-temperature tolerance in insects and show that these effects are typically pronounced for most taxa in which data are available. We therefore argue that basal thermal tolerance and acclimation responses (i.e. phenotypic plasticity) are strongly influenced by age and/or ontogeny and may confound studies of temperature responses if unaccounted for. We outline three alternative hypotheses which can be distinguished to propose why development affects thermal tolerance in insects. At present no studies have been undertaken to directly address these options. The implications of these age-related changes in thermal biology are discussed and, most significantly, suggest that the temperature tolerance of insects should be defined within the age-demographics of a particular population or species. Although we conclude that age is a source of variation that should be carefully controlled for in thermal biology, we also suggest that it can be used as a valuable tool for testing evolutionary theories of ageing and the cellular and genetic basis of thermal tolerance.  相似文献   
73.

Background  

There are few predictions about the directionality or extent of morphological trait (mis)matches between interacting organisms. We review and analyse studies on morphological trait complementarity (e.g. floral tube length versus insect mouthpart length) at the population and species level.  相似文献   
74.
75.
The present study examines life stage‐related variation in the thermal limits to activity and survival in an African pest, the false codling moth Thaumatotibia leucotreta (Lepidoptera, Tortricidae). Thermal tolerance, including the functional activity limits of critical thermal maxima and minima (CTmax and CTmin respectively), upper and lower lethal temperature, and the effect of heat and cold hardening (short‐term acute plasticity), is measured across a diverse range of low or high temperature stress conditions in both larvae and adults. We also report the sum of inducible and cognate forms of the amounts of heat shock protein 70 (HSP70) as an explanatory variable for changes in thermotolerance. The results show that the larvae have high variability in CTmax and CTmin at different ramping rates and low levels of basal (innate) thermal tolerance. By contrast, the adults show high basal tolerance and overall lower variability in CTmax and CTmin, indicating lower levels of phenotypic plasticity in thermotolerance. HSP70 responses, although variable, do not reflect these tolerance or survival patterns. Larvae survive across a broader range of temperatures, whereas adults remain active across a broader range of temperatures. Life stage‐related variation in thermal tolerance is most pronounced under the slowest (most ecologically‐relevant) ramping rate (0.06 °C min–1) during lower critical thermal limit experiments and least pronounced during upper thermal limit experiments. Thus, the ramping rate can hinder or enhance the detection of stage‐related variation in thermal limits to activity and survival of insects.  相似文献   
76.
77.
It is widely appreciated that physiological tolerances differ between life stages. However, few studies have examined stage-related differences in acclimation and hardening. In addition, the behavioural responses involved in determining the form and extent of the short-term phenotypic response are rarely considered. Here, we investigate life stage differences in the acclimation and hardening responses of the survival of a standard heat shock (SHS) and standard low temperature (or cold) shock (SCS), and the crystallization temperature (or supercooling point, SCP) of adults and larvae of the sub-Antarctic kelp fly, Paractora dreuxi. These stages live in the same habitat, but differ substantially in their mobility and thus environmental temperatures experienced. Results showed that neither acclimation nor hardening affected the lower lethal limits in larvae or adults. Adults showed an increase in survival of upper lethal limits after low temperature acclimation, whilst larvae showed a consistent lack of response. The acclimation × hardening interaction significantly affected the SCP in adults, but no response to either acclimation or hardening was found in the larvae. This study further demonstrates the complexities of thermal tolerance responses in P. dreuxi.  相似文献   
78.
The aim of this study was to ascertain the effects of training at altitude (1750 m. PB = 630mmHg) and at sea level (10m, PB = 760mmHg) as well as that of a period of adaptation of originally sea level-trained rats at altitude on endurance capacity. The average run time to exhaustion was 185.3 +/- 3.7 min for rats trained at altitude in comparison with 150.0 +/- 10.3 min for sea level-trained rats. After 14 days of adaptation at altitude, no significant difference in running time to exhaustion between rats trained at altitude (189.0 +/- 16.4 min) and those trained at sea level (177.2 +/- 11.6 min) was apparent. The improved endurance capacity of rats trained at altitude (when tested at altitude) is probably attributable to an increased respiratory capacity as is evident from the significantly increased levels of the citric acid cycle marker enzyme, citrate synthase (citrate oxaloacetate-lyase, EC 4.1.3.7) in the liver and gastrocnemius muscle of rats trained at altitude as compared to those trained at sea level.  相似文献   
79.
The effects of acclimation temperature on insect thermal performance curves are generally poorly understood but significant for understanding responses to future climate variation and the evolution of these reaction norms. Here, in Acheta domesticus, we examine the physiological effects of 7-9 days acclimation to temperatures 4 °C above and below optimum growth temperature of 29 °C (i.e. 25, 29, 33 °C) for traits of resistance to thermal extremes, temperature-dependence of locomotion performance (jumping distance and running speed) and temperature-dependence of respiratory metabolism. We also examine the effects of acclimation on mitochondrial cytochrome c oxidase (CCO) enzyme activity. Chill coma recovery time (CRRT) was significantly reduced from 38 to 13 min with acclimation at 33-25 °C, respectively. Heat knockdown resistance was less responsive than CCRT to acclimation, with no significant effects of acclimation detected for heat knockdown times (25 °C: 18.25, 29 °C: 18.07, 33 °C: 25.5 min). Thermal optima for running speed were higher (39.4-40.6 °C) than those for jumping performance (25.6-30.9 °C). Acclimation temperature affected jumping distance but not running speed (general linear model, p = 0.0075) although maximum performance (UMAX) and optimum temperature (TOPT) of the performance curves showed small or insignificant effects of acclimation temperature. However, these effects were sensitive to the method of analysis since analyses of TOPT, UMAX and the temperature breadth (TBR) derived from non-linear curve-fitting approaches produced high inter-individual variation within acclimation groups and reduced variation between acclimation groups. Standard metabolic rate (SMR) was positively related to body mass and test temperature. Acclimation temperature significantly influenced the slope of the SMR-temperature reaction norms, whereas no variation in the intercept was found. The CCO enzyme activity remained unaffected by thermal acclimation. Finally, high temperature acclimation resulted in significant increases in mortality (60-70% at 33 °C vs. 20-30% at 25 and 29 °C). These results suggest that although A. domesticus may be able to cope with low temperature extremes to some degree through phenotypic plasticity, population declines with warmer mean temperatures of only a few degrees are likely owing to the limited plasticity of their performance curves.  相似文献   
80.
Expressed on various cell types, the IL-4Ralpha is a component of both receptors for IL-4 and IL-13. Susceptibility of BALB/c mice to Leishmania major is believed to be dependent on the development of IL-4- and IL-13-producing Th2 cells, while IFN-gamma secretion by Th1 cells is related to resistance. Despite a sustained development of Th2 cells, IL-4Ralpha-deficient BALB/c mice are able to control acute cutaneous leishmaniasis, suggesting that IL-4Ralpha-bearing cells other than Th2 cells contribute to susceptibility. To analyze the contribution of the IL-4Ralpha on macrophages, recently generated macrophage/neutrophil-specific IL-4Ralpha-deficient mice on a susceptible BALB/c genetic background were infected with L. major. Strikingly, macrophage/neutrophil-specific IL-4Ralpha-deficient mice showed a significantly delayed disease progression with normal Th2 and type 2 Ab responses but improved macrophage leishmanicidal effector functions and reduced arginase activity. Together, these results suggest that alternative macrophage activation contributes to susceptibility in cutaneous leishmaniasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号