首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   6篇
  105篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   7篇
  2015年   3篇
  2014年   6篇
  2013年   5篇
  2012年   4篇
  2011年   7篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1992年   4篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1982年   3篇
  1981年   2篇
  1972年   1篇
  1968年   1篇
排序方式: 共有105条查询结果,搜索用时 9 毫秒
11.
Critical thermal limits depend on methodological context   总被引:3,自引:0,他引:3  
A full-factorial study of the effects of rates of temperature change and start temperatures was undertaken for both upper and lower critical thermal limits (CTLs) using the tsetse fly, Glossina pallidipes. Results show that rates of temperature change and start temperatures have highly significant effects on CTLs, although the duration of the experiment also has a major effect. Contrary to a widely held expectation, slower rates of temperature change (i.e. longer experimental duration) resulted in poorer thermal tolerance at both high and low temperatures. Thus, across treatments, a negative relationship existed between duration and upper CTL while a positive relationship existed between duration and lower CTL. Most importantly, for predicting tsetse distribution, G. pallidipes suffer loss of function at less severe temperatures under the most ecologically relevant experimental conditions for upper (0.06 degrees C min(-1); 35 degrees C start temperature) and lower CTL (0.06 degrees C min(-1); 24 degrees C start temperature). This suggests that the functional thermal range of G. pallidipes in the wild may be much narrower than previously suspected, approximately 20-40 degrees C, and highlights their sensitivity to even moderate temperature variation. These effects are explained by limited plasticity of CTLs in this species over short time scales. The results of the present study have broad implications for understanding temperature tolerance in these and other terrestrial arthropods.  相似文献   
12.
The fundamental equation of the metabolic theory of ecology (MTE) indicates that most of the variation in metabolic rate are a consequence of variation in organismal size and environmental temperature. Although evolution is thought to minimize energy costs of nutrient transport, its effects on metabolic rate via adaptation, acclimatization or acclimation are considered small, and restricted mostly to variation in the scaling constant, b(0). This contrasts strongly with many conclusions of evolutionary physiology and life-history theory, making closer examination of the fundamental equation an important task for evolutionary biologists. Here we do so using scorpions as model organisms. First, we investigate the implications for the fundamental equation of metabolic rate variation and its temperature dependence in the scorpion Uroplectes carinatus following laboratory acclimation. During 22 days of acclimation at 25 degrees C metabolic rates declined significantly (from 127.4 to 78.2 microW; P = 0.0001) whereas mean body mass remained constant (367.9-369.1 mg; P = 0.999). In field-fresh scorpions, metabolic rate-temperature (MRT) relationships varied substantially within and among individuals, and therefore had low repeatability values (tau = 0.02) and no significant among-individual variation (P = 0.181). However, acclimation resulted in a decline in within-individual variation of MRT slopes which subsequently revealed significant differences among individuals (P = 0.0031) and resulted in a fourfold increase in repeatability values (tau = 0.08). These results highlight the fact that MRT relationships can show substantial, directional variation within individuals over time. Using a randomization model we demonstrate that the reduction in metabolic rate with acclimation while body mass remains constant causes a decline both in the value of the mass-scaling exponent and the coefficient of determination. Furthermore, interspecific comparisons of activation energy, E, demonstrated significant variation in scorpions (0.09-1.14 eV), with a mean value of 0.77 eV, significantly higher than the 0.6-0.7 eV predicted by the fundamental equation. Our results add to a growing body of work questioning both the theoretical basis and empirical support for the MTE, and suggest that alternative models of metabolic rate variation incorporating explicit consideration of life history evolution deserve further scrutiny.  相似文献   
13.
The aim of this study was to ascertain the effects of training and ACTH administration on the steroidogenic in vitro response in the adrenal cortex of the rat when the tissue was incubated with ACTH. ACTH in vivo treatment resulted in a highly significant increase in the steroidogenic response (P less than 0.001) whereas training as such caused only a slight but insignificant increase in the steroidogenic responsiveness (P greater than 0.05). Training furthermore strongly suppressed the ACTH in vivo induced response (P less than 0.001). ACTH as such revealed the smallest effect on adrenal mass but the biggest effect on the steroidogenic response. It would seem that long term exercise resulted in an overall increase in the mass and size of the adrenal glands by either increasing the size of existing cells or by increasing the number of cells or both. The latter exercise-induced proliferation of adrenal tissue may involve an adaptive mechanism whereby larger total quantities of adrenal tissue of lowered steroidogenic efficiencies (on a mass basis) are produced in order to meet the stress resulting from the training program.  相似文献   
14.
This study presents the first physiological information for a member of the wingless Mantophasmatodea, or Heelwalkers. This species shows cyclic gas exchange with no evidence of a Flutter period (more typical of discontinuous gas exchange in insects) and no indication that the spiracles are fully occluded during quiescent metabolism. Standard metabolic rate at 20 degrees C was 21.32+/-2.73 microl CO(2)h(-1) (mean+/-S.E.), with a Q(10) (10-25 degrees C) of 1.7. Increases in V()CO(2) associated with variation in mass and with trial temperature were modulated by an increase in burst period volume and a decline in cycle frequency. Total water loss rate, determined by infrared gas analysis, was 0.876+/-0.08 mg H(2)Oh(-1) (range 0.602-1.577, n=11) whilst cuticular water loss rate, estimated by linear regression of total water loss rate and metabolic rate, was 0.618+/-0.09 mg H(2)Oh(-1) (range 0.341-1.363, n=11). Respiratory water loss rate was therefore no more than 29% of the total rate of water loss. Both total water loss rate and estimated cuticular water loss rate were significantly repeatable, with intraclass correlation coefficients of 0.745 and 0.553, respectively.  相似文献   
15.
1.
Determining the critical thermal limits to activity is a first step towards clarifying how temperature affects population dynamics and geographic distribution of ectothermic insects. However, thermal tolerance may be influenced by a number of factors at the species or population level, including age, gender and feeding status.  相似文献   
16.
The ability of a pest insect species to enter diapause, a physiological state of dormancy, has significant implications for population dynamics and pest management practises in agricultural landscapes. The false codling moth Thaumatotibia leucotreta is a major pest of deciduous and citrus fruit in southern Africa and a quarantine pest of international concern. Apart from an early field assessment that may have been compromised by taxonomic uncertainty surrounding cryptic developing life stages, no studies have investigated diapause induction within an experimental framework for this species, and none to date have used a suite of physiological traits potentially indicative of the diapause state. Here, we subjected larvae to cooling and shortening day length over a period of 14 days [Diapause Treatment (DT) group] relative to a similar‐aged control (CON) group held at optimal rearing conditions (25°C, 12 : 12 L : D) and tested if physiological traits, including resting metabolic rate, body freezing temperature (=supercooling point, equivalent to the low‐temperature mortality threshold) and body condition (body mass, body lipid and water content) varied in a direction that may be reflective of diapause induction. Mean metabolic rate in DT larvae was 0.044 ml CO2/h (mean mass: 52.7 mg), which was significantly higher than in CON larvae [0.025 ml CO2/h, mean mass: 51.5 mg (P = 0.04)]. Supercooling points were not statistically lower in the CON group than in DT larvae (DT:?15.6 ± 1.5°C; CON: ?16.4 ± 2.8°C; P = 0.33). Measures of body size, body condition and resting water loss rates remained similar between groups. These results support the conclusion of early field observations that T. leucotreta does not undergo diapause that has significant implications for the management of the species.  相似文献   
17.
How the impacts of climate change on biological invasions will play out at the mechanistic level is not well understood. Two major hypotheses have been proposed: invasive species have a suite of traits that enhance their performance relative to indigenous ones over a reasonably wide set of circumstances; invasive species have greater phenotypic plasticity than their indigenous counterparts and will be better able to retain performance under altered conditions. Thus, two possibly independent, but complementary mechanistic perspectives can be adopted: based on trait means and on reaction norms. Here, to demonstrate how this approach might be applied to understand interactions between climate change and invasion, we investigate variation in the egg development times and their sensitivity to temperature amongst indigenous and introduced springtail species in a cool temperate ecosystem (Marion Island, 46°54′S 37°54′E) that is undergoing significant climate change. Generalized linear model analyses of the linear part of the development rate curves revealed significantly higher mean trait values in the invasive species compared to indigenous species, but no significant interactions were found when comparing the thermal reaction norms. In addition, the invasive species had a higher hatching success than the indigenous species at high temperatures. This work demonstrates the value of explicitly examining variation in trait means and reaction norms among indigenous and invasive species to understand the mechanistic basis of variable responses to climate change among these groups.  相似文献   
18.
The last few decades have seen a growing number of species invasions globally, including many insect species. In drosophilids, there are several examples of successful invasions, i.e. Zaprionus indianus and Drosophila subobscura some decades ago, but the most recent and prominent example is the invasion of Europe and North America by the pest species, Drosophila suzukii. During the invasive process, species often encounter diverse environmental conditions that they must respond to, either through rapid genetic adaptive shifts or phenotypic plasticity, or by some combination of both. Consequently, invasive species constitute powerful models for investigating various questions related to the adaptive processes that underpin successful invasions. In this paper, we highlight how Drosophila have been and remain a valuable model group for understanding these underlying adaptive processes, and how they enable insight into key questions in invasion biology, including how quickly adaptive responses can occur when species are faced with new environmental conditions.  相似文献   
19.
During this investigation the effects of heat acclimation and exercise on creatine kinase and creatine kinase BB isoenzyme responses in various tissues and serum of male Sprague-Dawley rats were ascertained. Forty rats were randomly divided into two groups of 20 rats each. One group was housed at 22+/-1 degrees C and the other at 33+/-1 degrees C. Each of the two groups were subdivided into two subgroups of ten rats each. One subgroup of each group was subjected to a programme of treadmill running of progressive intensity over a period of 6 weeks at the temperature at which it was housed while the other served as a resting control. At the end of the acclimation programme the rats were running at 23 m/min for 80 min. On the day of sacrifice all four subgroups were subjected to a discontinuous exercise protocol (10 min running alternated by a 2-min rest period; repeated three times) at 30+/-1 degrees C on a rodent treadmill at 23 m/min. The tissues investigated were kidney, heart and muscle. The rats were anaesthetized with pentobarbital sodium (6 mg/100 g body mass) injected intraperitoneally. The tissues were freeze-clamped and stored in liquid air until analysed. The body temperature of the four subgroups at the end of the experimental protocol were not significantly different. Acclimation at 33+/-1 degrees C resulted in significantly lower creatine kinase activity levels. Exercise at 30+/-1 degrees C also resulted in decreased creatine kinase activity levels in both acclimated groups. A similar trend was observed regarding creatine kinase BB isoenzyme activity levels, especially in kidney.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号