首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   21篇
  2022年   4篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2016年   8篇
  2015年   10篇
  2014年   9篇
  2013年   13篇
  2012年   25篇
  2011年   21篇
  2010年   17篇
  2009年   9篇
  2008年   18篇
  2007年   14篇
  2006年   18篇
  2005年   19篇
  2004年   12篇
  2003年   13篇
  2002年   12篇
  2001年   8篇
  2000年   5篇
  1999年   3篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   5篇
  1985年   5篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   8篇
  1980年   5篇
  1979年   1篇
  1978年   4篇
  1975年   1篇
  1974年   2篇
  1973年   3篇
  1968年   1篇
  1953年   1篇
  1952年   2篇
  1921年   1篇
排序方式: 共有335条查询结果,搜索用时 15 毫秒
171.

Background

Neutrophils depend mainly on glycolysis for their energy provision. Their mitochondria maintain a membrane potential (Δψm), which is usually generated by the respiratory chain complexes. We investigated the source of Δψm in neutrophils, as compared to peripheral blood mononuclear leukocytes and HL-60 cells, and whether neutrophils can still utilise this Δψm for the generation of ATP.

Methods and Principal Findings

Individual activity of the oxidative phosphorylation complexes was significantly reduced in neutrophils, except for complex II and V, but Δψm was still decreased by inhibition of complex III, confirming the role of the respiratory chain in maintaining Δψm. Complex V did not maintain Δψm by consumption of ATP, as has previously been suggested for eosinophils. We show that complex III in neutrophil mitochondria can receive electrons from glycolysis via the glycerol-3-phosphate shuttle. Furthermore, respiratory supercomplexes, which contribute to efficient coupling of the respiratory chain to ATP synthesis, were lacking in neutrophil mitochondria. When HL-60 cells were differentiated to neutrophil-like cells, they lost mitochondrial supercomplex organisation while gaining increased aerobic glycolysis, just like neutrophils.

Conclusions

We show that neutrophils can maintain Δψm via the glycerol-3-phosphate shuttle, whereby their mitochondria play an important role in the regulation of aerobic glycolysis, rather than producing energy themselves. This peculiar mitochondrial phenotype is acquired during differentiation from myeloid precursors.  相似文献   
172.
Anammox bacteria have unique intracellular membranes that divide their cytoplasm into three separate compartments. The largest and innermost cytoplasmic compartment, the anammoxosome, is hypothesized to be the locus of all catabolic reactions in the anammox metabolism. Electron tomography showed that the anammoxosome and its membrane were highly folded. This finding was confirmed by a transmission electron microscopy study using different sample preparation methods. Further, in this study electron-dense particles were observed and electron tomography showed that they were confined to the anammoxosome compartment. Energy dispersive X-ray analysis revealed that these particles contained iron. The functional significance of a highly folded anammoxosome membrane and intracellular iron storage particles are discussed in relation to their possible function in energy generation.  相似文献   
173.

Background  

The ambystomatid salamander, Ambystoma mexicanum (axolotl), is an important model organism in evolutionary and regeneration research but relatively little sequence information has so far been available. This is a major limitation for molecular studies on caudate development, regeneration and evolution. To address this lack of sequence information we have generated an expressed sequence tag (EST) database for A. mexicanum.  相似文献   
174.
175.
Induction of the otic placode, which gives rise to all tissues comprising the inner ear, is a fundamental aspect of vertebrate development. A number of studies indicate that fibroblast growth factor (Fgf), especially Fgf3, is necessary and sufficient for otic induction. However, an alternative model proposes that Fgf must cooperate with Wnt8 to induce otic differentiation. Using a genetic approach in zebrafish, we tested the roles of Fgf3, Fgf8 and Wnt8. We demonstrate that localized misexpression of either Fgf3 or Fgf8 is sufficient to induce ectopic otic placodes and vesicles, even in embryos lacking Wnt8. Wnt8 is expressed in the hindbrain around the time of otic induction, but loss of Wnt8 merely delays expression of preotic markers and otic vesicles form eventually. The delay in otic induction correlates closely with delayed expression of fgf3 and fgf8 in the hindbrain. Localized misexpression of Wnt8 is insufficient to induce ectopic otic tissue. By contrast, global misexpression of Wnt8 causes development of supernumerary placodes/vesicles, but this reflects posteriorization of the neural plate and consequent expansion of the hindbrain expression domains of Fgf3 and Fgf8. Embryos that misexpress Wnt8 globally but are depleted for Fgf3 and Fgf8 produce no otic tissue. Finally, cells in the preotic ectoderm express Fgf (but not Wnt) reporter genes. Thus, preotic cells respond directly to Fgf but not Wnt8. We propose that Wnt8 serves to regulate timely expression of Fgf3 and Fgf8 in the hindbrain, and that Fgf from the hindbrain then acts directly on preplacodal cells to induce otic differentiation.  相似文献   
176.
The influence of ageing on supra-threshold intensity perception of NaCl, KCl, sucrose, aspartame, acetic acid, citric acid, caffeine, quinine HCl, monosodium glutamate (MSG) and inosine 5'-monophosphate (IMP) dissolved in water and in 'regular' product was studied in 21 young (19-33 years) and 21 elderly (60-75 years) persons. While the relative perception (intensity discrimination) seems to be remarkably resistant to the effect of ageing, the absolute perception (intensity rating) decreased with age for all tastants in water, but only for the salty and sweet tastants in product. When assessed while wearing a nose clip, only the perception of salty tastants was diminished with age. The slopes of the psychophysical functions were flatter in the elderly than in the young for the sweet, bitter and umami tastants in water, and for the sour tastants in product only. The age effects found were almost exclusively generic and never compound-specific within a taste. This study indicates that the relevance of determining intensities of tastants dissolved in water for the 'real life' perception of taste in complex food is rather limited.  相似文献   
177.
We present a linkage study in a four-generation autosomal dominant cerebellar ataxia (ADCA) family of Dutch ancestry. The family shows a clinically and genetically distinct form of ADCA. This neurodegenerative disorder manifests in the family as a relatively mild ataxia syndrome with some additional characteristic symptoms. We have identified a SCA19 locus, approved by the Human Genome Nomenclature Committee that can be assigned to the chromosome region 1p21-q21. Our mutation analysis failed to identify any mutations in the known spinocerebellar ataxia ( SCA) genes and linkage analysis excluded the remaining SCA loci. We therefore performed a genome-wide scan with 350 microsatellite markers to identify the location of the disease-causing gene in this family. Multi-point analysis was performed and exclusion maps were generated. Linkage and haplotype analysis revealed linkage to an interval located on chromosome 1. The estimated minimal prevalence of ADCA in the Netherlands is about 3:100,000. To date, sixteen different SCA loci have been identified in ADCA ( SCA1-8 and SCA10-17). However, mutation analysis has been commercially available only for the SCA1, 2, 3, 6 and 7 genes. So far, a molecular analysis in these SCA genes cannot be made in about one-third of the ADCA families. Thus, the identification of this new, additional SCA19 locus will contribute to expanding the DNA diagnostic possibilities.  相似文献   
178.
179.
This paper describes the effects of increased expression of the cell division genes ftsZ, ftsQ, and ssgA on the development of both solid- and liquid-grown mycelium of Streptomyces coelicolor and Streptomyces lividans. Over-expression of ftsZ in S. coelicolor M145 inhibited aerial mycelium formation and blocked sporulation. Such deficient sporulation was also observed for the ftsZ mutant. Over-expression of ftsZ also inhibited morphological differentiation in S. lividans 1326, although aerial mycelium formation was less reduced. Furthermore, antibiotic production was increased in both strains, and in particular the otherwise dormant actinorhodin biosynthesis cluster of S. lividans was activated in liquid- and solid-grown cultures. No significant alterations were observed when the gene dosage of ftsQ was increased. Analysis by transmission electron microscopy of an S. coelicolor strain over-expressing ssgA showed that septum formation had strongly increased in comparison to wild-type S. coelicolor, showing that SsgA clearly influences Streptomyces cell division. The morphology of the hyphae was affected such that irregular septa were produced with a significantly wider diameter, thereby forming spore-like compartments. This suggests that ssgA can induce a process similar to submerged sporulation in Streptomyces strains that otherwise fail to do so. A working model is proposed for the regulation of septum formation and of submerged sporulation.  相似文献   
180.
Genetic studies identified Itch, which is a homologous to the E6-associated protein carboxyl terminus (Hect) domain-containing E3 ubiquitin-protein ligase that is disrupted in non-agouti lethal mice or Itchy mice. Itch-deficiency results in abnormal immune responses and constant itching in the skin. Here, Itch was shown to associate with Notch, a protein involved in cell fate decision in many mammalian cell types, including cells in the immune system. Itch binds to the N-terminal portion of the Notch intracellular domain via its WW domains and promotes ubiquitination of Notch through its Hect ubiquitin ligase domain. Thus, Itch may participate in the regulation of immune responses by modifying Notch-mediated signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号