首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   28篇
  国内免费   2篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2015年   7篇
  2014年   4篇
  2013年   4篇
  2012年   12篇
  2011年   6篇
  2010年   6篇
  2009年   5篇
  2008年   2篇
  2007年   7篇
  2006年   5篇
  2004年   4篇
  2002年   3篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1978年   4篇
  1977年   5篇
  1975年   2篇
  1973年   2篇
  1972年   4篇
  1971年   2篇
  1970年   2篇
  1969年   3篇
  1967年   2篇
  1966年   1篇
  1963年   1篇
  1955年   2篇
  1948年   1篇
  1947年   2篇
  1934年   1篇
  1933年   2篇
  1929年   1篇
排序方式: 共有172条查询结果,搜索用时 234 毫秒
151.
152.

Background  

Giardia intestinalis is a parasitic protozoan and major cause of diarrhoeal disease. Disease transmission is dependent on the ability of the parasite to differentiate back and forth between an intestine-colonising trophozoite and an environmentally-resistant infective cyst. Our current understanding of the intracellular signalling mechanisms that regulate parasite replication and differentiation is limited, yet such information could suggest new methods of disease control. Phosphoinositide-3 kinase (PI3K) signalling pathways have a central involvement in many vital eukaryotic processes, such as regulation of cell growth, intracellular membrane trafficking and cell motility. Here we present evidence for the existence of functional PI3K intracellular signalling pathways in G. intestinalis.  相似文献   
153.
Prenatal maternal psychological distress increases risk for adverse infant outcomes. However, the biological mechanisms underlying this association remain unclear. Prenatal stress can impact fetal epigenetic regulation that could underlie changes in infant stress responses. It has been suggested that maternal glucocorticoids may mediate this epigenetic effect. We examined this hypothesis by determining the impact of maternal cortisol and depressive symptoms during pregnancy on infant NR3C1 and BDNF DNA methylation. Fifty-seven pregnant women were recruited during the second or third trimester. Participants self-reported depressive symptoms and salivary cortisol samples were collected diurnally and in response to a stressor. Buccal swabs for DNA extraction and DNA methylation analysis were collected from each infant at 2 months of age, and mothers were assessed for postnatal depressive symptoms. Prenatal depressive symptoms significantly predicted increased NR3C1 1F DNA methylation in male infants (β = 2.147, P = 0.044). Prenatal depressive symptoms also significantly predicted decreased BDNF IV DNA methylation in both male and female infants (β = −3.244, P = 0.013). No measure of maternal cortisol during pregnancy predicted infant NR3C1 1F or BDNF promoter IV DNA methylation. Our findings highlight the susceptibility of males to changes in NR3C1 DNA methylation and present novel evidence for altered BDNF IV DNA methylation in response to maternal depression during pregnancy. The lack of association between maternal cortisol and infant DNA methylation suggests that effects of maternal depression may not be mediated directly by glucocorticoids. Future studies should consider other potential mediating mechanisms in the link between maternal mood and infant outcomes.  相似文献   
154.
Carbohydrate metabolism by the oral bacterium Streptococcus sanguis NCTC 7865 was studied using cells grown in a chemostat at pH 7.0 under glucose or amino acid limitation (glucose excess) over a range of growth rates (D = 0.05 h-1-0.4 h-1). A mixed pattern of fermentation products was always produced although higher concentrations of lactate were formed under amino acid limitation. Analysis of culture filtrates showed that arginine was depleted from the medium under all conditions of growth; a further supplement of 10 mM-arginine was also consumed but did not affect cell yields, suggesting that it was not limiting growth. Except at the slowest growth rate (D = 0.05 h-1) under glucose limitation, the activity of the glucose phosphotransferase (PTS) system was insufficient to account for the glucose consumed during growth, emphasizing the importance of an alternative method of hexose transport in the metabolism of oral streptococci. The PTS for a number of sugars was constitutive in S. sanguis NCTC 7865 and, even though the cells were grown in the presence of glucose, the activity of the sucrose-PTS was highest. The glycolytic activity of cells harvested from the chemostat was affected by the substrate, the pH of the environment, and their original conditions of growth. Glucose-limited cells produced more acid than those grown under conditions of glucose excess; at slow growth rates, in particular, greater activities were obtained with sucrose compared with glucose or fructose. Maximum rates of glycolytic activity were obtained at pH 8.0 (except for cells grown at D = 0.4 h-1 where values were highest at pH 7.0), while slow-growing, amino acid-limited cells could not metabolize at pH 5.0. These results are discussed in terms of their possible significance in the ecology of dental plaque and the possible involvement of these bacteria in the initiation but not the clinical progression of a carious lesion.  相似文献   
155.
Lactic streptococci, classically regarded as homolactic fermenters of glucose and lactose, became heterolactic when grown with limiting carbohydrate concentrations in a chemostat. At high dilution rates (D) with excess glucose present, about 95% of the fermented sugar was converted to l-lactate. However, as D was lowered and glucose became limiting, five of the six strains tested changed to a heterolactic fermentation such that at D = 0.1 h(-1) as little as 1% of the glucose was converted to l-lactate. The products formed after this phenotypic change in fermentation pattern were formate, acetate, and ethanol. The level of lactate dehydrogenase, which is dependent upon ketohexose diphosphate for activity, decreased as fermentation became heterolactic with Streptococcus lactis ML(3). Transfer of heterolactic cells from the chemostat to buffer containing glucose resulted in the nongrowing cells converting nearly 80% of the glucose to l-lactate, indicating that fine control of enzyme activity is an important factor in the fermentation change. These nongrowing cells metabolizing glucose had elevated (ca. twofold) intracellular fructose 1,6-diphosphate concentrations ([FDP](in)) compared with those in the glucose-limited heterolactic cells in the chemostat. [FDP](in) was monitored during the change in fermentation pattern observed in the chemostat when glucose became limiting. Cells converting 95 and 1% of the glucose to l-lactate contained 25 and 10 mM [FDP](in), respectively. It is suggested that factors involved in the change to heterolactic fermentation include both [FDP](in) and the level of lactate dehydrogenase.  相似文献   
156.
157.
158.
159.
Tropical rainforests are increasingly disturbed by human activities. While restoration projects often succeed in replacing tree cover, they rarely manage to restore soil function. Consequently, there is an urgent need to understand the changes that occur during soil restoration. Model ecosystems such as the Eden Project present an ideal opportunity to investigate these changes. The Eden Project was built 15 years ago, and its plants grown from seedlings, or sown directly into a soil made up of standardized mixtures of recycled organic material. Today, the Eden Project's rainforest biome consists of a diverse community of plants, invertebrates, and microorganisms. Different areas within the biome are managed differently, allowing us to separate the relative contributions of decomposers under differing physical conditions. Litterbag experiments revealed significant differences in decomposition rates in bags of different mesh sizes. Phospholipid fatty acid analysis revealed that microbial biomass and community structure varied under different management regimes. Soil enzyme assays revealed that glucosidase activity increased in soils with more organic matter, whereas phenol oxidase activity increased in more alkaline soils. Our study takes a step toward understanding the interactions between invertebrates and microbes, and the way in which soils function during restoration.  相似文献   
160.
With a chemostat culture, both the bacterial growth rate and the growth environment can be independently varied between wide limits. Changing the growth rate of Aerobacter aerogenes organisms (in either a glycerol-limited medium or a Mg2+-limited medium) affected the bacterial cell wall content; invariably slow growing organisms were smaller than faster growing ones and had a higher cell wall/biomass ratio. Changing the growth rate also influenced the composition of the walls but in this respect glycerol-limited organisms and Mg2+-limited organisms behaved differently. Thus, whereas increasing the growth rate of glycerol-limited cultures caused the cell wall 2-keto-3-deoxyoctonic acid (KDO) and heptose contents to increase progressively, with Mg2+-limited cultures they decreased. Furthermore, although KDO and heptose are both components of the lipopolysaccharide layer, their ratio varied with growth rate, and with the nature of the growth-limitation, indicating changes in the lipopolysaccharide composition. These results are discussed with particular reference to the influence of environment on cell wall content and composition, and the use of continuous culture for the production of bacterial vaccines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号