首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   21篇
  国内免费   1篇
  268篇
  2021年   5篇
  2020年   9篇
  2019年   4篇
  2018年   6篇
  2017年   6篇
  2016年   4篇
  2015年   6篇
  2014年   3篇
  2013年   10篇
  2012年   19篇
  2011年   9篇
  2010年   12篇
  2009年   4篇
  2008年   7篇
  2007年   9篇
  2006年   5篇
  2005年   7篇
  2004年   5篇
  2003年   8篇
  2002年   8篇
  2001年   10篇
  2000年   8篇
  1999年   12篇
  1998年   4篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1989年   4篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1979年   2篇
  1978年   2篇
  1974年   4篇
  1973年   3篇
  1971年   3篇
  1969年   5篇
  1968年   3篇
  1967年   3篇
  1966年   2篇
  1948年   2篇
  1928年   2篇
  1918年   1篇
  1915年   1篇
排序方式: 共有268条查询结果,搜索用时 0 毫秒
61.
62.
This is Part I of an article in two parts. Part II, Important Applications of Isotopes in Experimental Medicine, will appear in the August issue.  相似文献   
63.
Leaf-level net photosynthesis (An) estimates and associated photosynthetic parameters are crucial for accurately parameterizing photosynthesis models. For tropical forests, such data are poorly available and collected at variable light conditions. To avoid over- or underestimation of modeled photosynthesis, it is critical to know at which photosynthetic photon flux density (PPFD) photosynthesis becomes light-saturated. We studied the dependence of An on PPFD in two tropical forests in French Guiana. We estimated the light saturation range, including the lowest PPFD level at which Asat (An at light saturation) is reached, as well as the PPFD range at which Asat remained unaltered. The light saturation range was derived from photosynthetic light-response curves, and within-canopy and interspecific differences were studied. We observed wide light saturation ranges of An. Light saturation ranges differed among canopy heights, but a PPFD level of 1,000 µmol m−2 s−1 was common across all heights, except for pioneer trees species that did not reach light saturation below 2,000 µmol m−2 s−1. A light intensity of 1,000 µmol m−2 s−1 sufficed for measuring Asat of climax species at our study sites, independent of the species or the canopy height. Because of the wide light saturation ranges, results from studies measuring Asat at higher PPFD levels (for upper canopy leaves up to 1,600 µmol m−2 s−1) are comparable with studies measuring at 1,000 µmol m−2 s−1.  相似文献   
64.
65.
Physiological responses to elevated CO2 at the leaf and canopy-level were studied in an intact pine (Pinus taeda) forest ecosystem exposed to elevated CO2 using a free-air CO2 enrichment (FACE) technique. Normalized canopy water-use of trees exposed to elevated CO2 over an 8-day exposure period was similar to that of trees exposed to current ambient CO2 under sunny conditions. During a portion of the exposure period when sky conditions were cloudy, CO2-exposed trees showed minor (7%) but significant reductions in relative sap flux density compared to trees under ambient CO2 conditions. Short-term (minutes) direct stomatal responses to elevated CO2 were also relatively weak (5% reduction in stomatal aperture in response to high CO2 concentrations). We observed no evidence of adjustment in stomatal conductance in foliage grown under elevated CO2 for nearly 80 days compared to foliage grown under current ambient CO2, so intrinsic leaf water-use efficiency at elevated CO2 was enhanced primarily by direct responses of photosynthesis to CO2. We did not detect statistical differences in parameters from photosynthetic responses to intercellular CO2 (A net-C i curves) for Pinus taeda foliage grown under elevated CO2 (550 mol mol–1) for 50–80 days compared to those for foliage grown under current ambient CO2 from similar-sized reference trees nearby. In both cases, leaf net photosynthetic rate at 550 mol mol–1 CO2 was enhanced by approximately 65% compared to the rate at ambient CO2 (350 mol mol–1). A similar level of enhancement under elevated CO2 was observed for daily photosynthesis under field conditions on a sunny day. While enhancement of photosynthesis by elevated CO2 during the study period appears to be primarily attributable to direct photosynthetic responses to CO2 in the pine forest, longer-term CO2 responses and feedbacks remain to be evaluated.  相似文献   
66.
67.
Eighteen climbers actively ascended Mount Rainier (elevation 4,392 m) twice during a randomized, double-blind, concurrent, placebo-controlled, crossover trial comparing the use of acetazolamide, 250 mg, dexamethasone, 4 mg, and placebo every 8 hours as prophylaxis for acute mountain sickness. Each subject was randomly assigned to receive placebo during one ascent and one of the active medications during the other ascent. Assessment of acute mountain sickness was performed using the Environmental Symptoms Questionnaire and a clinical interview. At the summit or high point attained above base camp, the use of dexamethasone significantly reduced the incidence of acute mountain sickness and the severity of symptoms. Cerebral and respiratory symptom severity scores for subjects receiving dexamethasone (0.26 +/- 0.16 and 0.20 +/- 0.19, respectively) were significantly lower than similar scores for both acetazolamide (0.80 +/- 0.80 and 1.20 +/- 1.05; P = 0.25) and placebo (1.11 +/- 1.02 and 1.45 +/- 1.27; P = .025). Neither the use of dexamethasone nor that of acetazolamide measurably affected other physical or mental aspects. Compared with placebo, dexamethasone appears to be effective for prophylaxis of symptoms associated with acute mountain sickness accompanying rapid ascent. The precise role of dexamethasone for the prophylaxis of acute mountain sickness is not known, but it can be considered for persons without contraindications who are intolerant of acetazolamide, for whom acetazolamide is ineffective, or who must make forced, rapid ascent to high altitude for a short period of time with a guaranteed retreat route.  相似文献   
68.
69.
? Plant light interception efficiency is a crucial determinant of carbon uptake by individual plants and by vegetation. Our aim was to identify whole-plant variables that summarize complex crown architecture, which can be used to predict light interception efficiency. ? We gathered the largest database of digitized plants to date (1831 plants of 124 species), and estimated a measure of light interception efficiency with a detailed three-dimensional model. Light interception efficiency was defined as the ratio of the hemispherically averaged displayed to total leaf area. A simple model was developed that uses only two variables, crown density (the ratio of leaf area to total crown surface area) and leaf dispersion (a measure of the degree of aggregation of leaves). ? The model explained 85% of variation in the observed light interception efficiency across the digitized plants. Both whole-plant variables varied across species, with differences in leaf dispersion related to leaf size. Within species, light interception efficiency decreased with total leaf number. This was a result of changes in leaf dispersion, while crown density remained constant. ? These results provide the basis for a more general understanding of the role of plant architecture in determining the efficiency of light harvesting.  相似文献   
70.
Bacterial growth with short-chain aliphatic alkenes requires coenzyme M (CoM) (2-mercaptoethanesulfonic acid), which serves as the nucleophile for activation and conversion of epoxide products formed from alkene oxidation to central metabolites. In the present work the CoM analog 2-bromoethanesulfonate (BES) was shown to be a specific inhibitor of propylene-dependent growth of and epoxypropane metabolism by Xanthobacter autotrophicus strain Py2. BES (at low [millimolar] concentrations) completely prevented growth with propylene but had no effect on growth with acetone or n-propanol. Propylene consumption by cells was largely unaffected by the presence of BES, but epoxypropane accumulated in the medium in a time-dependent fashion with BES present. The addition of BES to cells resulted in time-dependent loss of epoxypropane degradation activity that was restored upon removal of BES and addition of CoM. Exposure of cells to BES resulted in a loss of epoxypropane-dependent CO(2) fixation activity that was restored only upon synthesis of new protein. Addition of BES to cell extracts resulted in an irreversible loss of epoxide carboxylase activity that was restored by addition of purified 2-ketopropyl-CoM carboxylase/oxidoreductase (2-KPCC), the terminal enzyme of epoxide carboxylation, but not by addition of epoxyalkane:CoM transferase or 2-hydroxypropyl-CoM dehydrogenase, the enzymes which catalyze the first two reactions of epoxide carboxylation. Comparative studies of the propylene-oxidizing actinomycete Rhodococcus rhodochrous strain B276 showed that BES is an inhibitor of propylene-dependent growth in this organism as well but is not an inhibitor of CoM-independent growth with propane. These results suggest that BES inhibits propylene-dependent growth and epoxide metabolism via irreversible inactivation of the key CO(2)-fixing enzyme 2-KPCC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号