首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   13篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   9篇
  2015年   13篇
  2014年   12篇
  2013年   9篇
  2012年   15篇
  2011年   10篇
  2010年   7篇
  2009年   4篇
  2008年   4篇
  2007年   6篇
  2006年   11篇
  2005年   11篇
  2004年   7篇
  2003年   5篇
  2002年   6篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1993年   3篇
  1992年   6篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1969年   2篇
  1968年   1篇
  1966年   2篇
  1964年   1篇
排序方式: 共有175条查询结果,搜索用时 31 毫秒
171.
Cell division is strictly regulated by a diversity of proteins and lipids to ensure proper duplication and segregation of genetic material and organelles. Here we report a novel role of the putative lipid transporter ACAT-related protein required for viability 1 (Arv1) during telophase. We observed that the subcellular localization of Arv1 changes according to cell cycle progression and that Arv1 is recruited to the cleavage furrow in early telophase by epithelial protein lost in neoplasm (EPLIN). At the cleavage furrow Arv1 recruits myosin heavy chain 9 (MYH9) and myosin light chain 9 (MYL9) by interacting with IQ-motif-containing GTPase-activating protein (IQGAP1). Consequently the lack of Arv1 delayed telophase-progression, and a strongly increased incidence of furrow regression and formation of multinuclear cells was observed both in human cells in culture and in follicle epithelial cells of egg chambers of Drosophila melanogaster in vivo. Interestingly, the cholesterol-status at the cleavage furrow did not affect the recruitment of either IQGAP1, MYH9 or MYL. These results identify a novel function for Arv1 in regulation of cell division through promotion of the contractile actomyosin ring, which is independent of its lipid transporter activity.  相似文献   
172.
Summary Human peripheral lymphocyte chromosomes were stained simultaneously for sister chromatid exchanges (SCEs) and Q-banding. No effect of treatment with MMS, QM, and Q on the distribution of SCEs in chromosomes was found compared with controls. The SCEs were distributed between chromosomes roughly according to metaphase length, with the shorter chromosomes underrepresented. The majority of SCEs were located to pale bands, while a few occurred in bright bands and at interfaces between pale and bright bands. A greater frequency than expected of SCEs had occurred at identical sites in homologous chromosomes. This frequency was significantly increased after treatment with MMS.  相似文献   
173.
Thalli of Ulva reticulata Forskaal, Ulva rigida C. Ag., and Ulva pulchra Jaasund were incubated at different concentrations of dissolved CO2. Incubation at a high CO2 concentration resulted in decreased oxygen evolution rate and lower affinity for inorganic carbon at high pH conditions, i.e. the ability to use HCO3 as a carbon source was reduced. This effect was reversible, and plants regained this HCO3 uptake capacity when transferred to air concentrations of CO2. The phytosynthetic oxygen evolution rate of plants grown at high CO2 concentration was reduced by high O2 concentrations, whereas thalli and protoplasts from cultures grown at air concentration were not affected. This is interpreted as a deactivation of the carbon-concentrating mechanism during conditions of high CO2 resulting in high photorespiration when plants are exposed to high O2 concentrations. Protoplasts were not affected by high O2 to the same extent and were not able to utilize HCO3 from the medium. The algae were able to grow at very low CO2 concentrations, but growth was suppressed when an inhibitor of external carbonic anhydrase was present. Assay of carbonic anhydrase activities showed that external and internal CA activities were lower in plants grown at a high CO2 concentration compared to plants grown at a low concentration of CO2. Possible mechanisms for HCO3 utilization in these Ulva species are discussed.  相似文献   
174.
175.
The orientation of the mitotic spindle (MS) is tightly regulated, but the molecular mechanisms are incompletely understood. Here we report a novel role for the multifunctional adaptor protein ALG‐2‐interacting protein X (ALIX) in regulating MS orientation in addition to its well‐established role in cytokinesis. We show that ALIX is recruited to the pericentriolar material (PCM) of the centrosomes and promotes correct orientation of the MS in asymmetrically dividing Drosophila stem cells and epithelial cells, and symmetrically dividing Drosophila and human epithelial cells. ALIX‐deprived cells display defective formation of astral microtubules (MTs), which results in abnormal MS orientation. Specifically, ALIX is recruited to the PCM via Drosophila Spindle defective 2 (DSpd‐2)/Cep192, where ALIX promotes accumulation of γ‐tubulin and thus facilitates efficient nucleation of astral MTs. In addition, ALIX promotes MT stability by recruiting microtubule‐associated protein 1S (MAP1S), which stabilizes newly formed MTs. Altogether, our results demonstrate a novel evolutionarily conserved role of ALIX in providing robustness to the orientation of the MS by promoting astral MT formation during asymmetric and symmetric cell division.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号