全文获取类型
收费全文 | 53篇 |
免费 | 4篇 |
专业分类
57篇 |
出版年
2021年 | 4篇 |
2019年 | 2篇 |
2018年 | 1篇 |
2017年 | 1篇 |
2016年 | 2篇 |
2015年 | 2篇 |
2014年 | 1篇 |
2012年 | 5篇 |
2011年 | 3篇 |
2010年 | 1篇 |
2009年 | 1篇 |
2007年 | 3篇 |
2006年 | 2篇 |
2005年 | 2篇 |
2003年 | 2篇 |
2002年 | 2篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1997年 | 1篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1987年 | 1篇 |
1985年 | 2篇 |
1983年 | 1篇 |
1978年 | 1篇 |
1971年 | 2篇 |
1970年 | 3篇 |
1969年 | 2篇 |
排序方式: 共有57条查询结果,搜索用时 0 毫秒
31.
Cell membranes and vesicles composed of extracted phospholipids isolated from rats chronically-fed ethanol develop a resistance to disordering by ethanol in vitro (membrane tolerance) and a decreased partitioning of ethanol into the membranes. The anionic lipid phosphatidylinositol (PtdIns) is the only microsomal phospholipid from the ethanol-fed rats that confers tolerance to vesicles of microsomal phospholipids from control rats in a paradigm where phospholipid classes are sequentially swapped. To investigate the molecular basis of this adaptation, the fatty acid content of microsomal PtdIns extracted from the livers of rats chronically fed ethanol for 5 weeks and their calorically-matched controls was analyzed by gas-liquid chromatography (GLC) and 1H-NMR spectroscopy. Chronic ethanol consumption caused an 8.4% decrease in arachidonic acid [20:4(n - 6)], a 20.0% increase in oleic acid [18: 1(n - 9)] and a 47.1% increase in the quantitatively minor fatty acid [20:3(n - 6)]. 1H-NMR was used to quantitatively assay compositional changes in the delta 5 olefinic moiety of the acyl chains in PtdIns, an approach that should be broadly applicable to other lipid systems. After chronic ethanol feeding PtdIns had decreased delta 5 unsaturates (-7.9% NMR, -8.2% GLC) and a corresponding increase in delta 5 saturates (+5.4% NMR, +5.3% GLC). In the other phospholipids, chronic ethanol feeding caused alterations in the fatty acid compositions specific for each phospholipid. PtdIns was the only microsomal phospholipid that exhibited a significant decrease in both the polyunsaturate pool and the ratio of the total olefinic content to the saturated fatty acid content. The major adaptive response in rat liver microsomal PtdIns to chronic ethanol administration involves a decrease in arachidonic acid [20:4 (n - 6)], which is partly compensated for by increases in oleic acid [18:1(n - 9)] and eicosatrienoic acid [20:3 (n - 6)], resulting in a depressed unsaturation and polyunsaturation index. The decreased unsaturation at the delta 5 position may have special functional relevance, due to the proximity of this position to the membrane surface, where ethanol is believed to reside. Whether these acyl changes are merely coincident with, or causative of, membrane tolerance requires further elucidation. 相似文献
32.
Sellhorn G Kraft Z Caldwell Z Ellingson K Mineart C Seaman MS Montefiori DC Lagerquist E Stamatatos L 《Journal of virology》2012,86(1):128-142
The envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) is composed of two noncovalently associated subunits: an extracellular subunit (gp120) and a transmembrane subunit (gp41). The functional unit of Env on the surface of infectious virions is a trimer of gp120/gp41 heterodimers. Env is the target of anti-HIV neutralizing antibodies. A considerable effort has been invested in the engineering of recombinant soluble forms of the virion-associated Env trimer as vaccine candidates to elicit anti-HIV neutralizing antibody responses. These soluble constructs contain three gp120 subunits and the extracellular segments of the corresponding gp41 subunits. The individual gp120/gp41 protomers on these soluble trimers are identical in amino acid sequence (homotrimers). Here, we engineered novel soluble trimeric gp140 proteins that are formed by the association of gp140 protomers that differ in amino acid sequence and glycosylation patterns (heterotrimers). Specifically, we engineered soluble heterotrimeric proteins composed of clade A and clade B Env protomers. The clade A gp140 protomers were derived from viruses isolated during acute infection (Q168a2, Q259d2.17, and Q461e2), whereas the clade B gp140 protomers were derived from a virus isolated during chronic infection (SF162). The amino acid sequence divergence between the clade A and the clade B Envs is approximately 24%. Neutralization epitopes in the CD4 binding sites and coreceptor binding sites, as well as the membrane-proximal external region (MPER), were differentially expressed on the heterotrimeric and homotrimeric proteins. The heterotrimeric gp140s elicited broader anti-tier 1 isolate neutralizing antibody responses than did the homotrimeric gp140s. 相似文献
33.
34.
Katie?M. Weigandt Nathan White Dominic Chung Erica Ellingson Yi Wang Xiaoyun Fu Danilo?C. Pozzo 《Biophysical journal》2012,103(11):2399-2407
Using a combination of structural and mechanical characterization, we examine the effect of fibrinogen oxidation on the formation of fibrin clots. We find that treatment with hypochlorous acid preferentially oxidizes specific methionine residues on the α, β, and γ chains of fibrinogen. Oxidation is associated with the formation of a dense network of thin fibers after activation by thrombin. Additionally, both the linear and nonlinear mechanical properties of oxidized fibrin gels are found to be altered with oxidation. Finally, the structural modifications induced by oxidation are associated with delayed fibrin lysis via plasminogen and tissue plasminogen activator. Based on these results, we speculate that methionine oxidation of specific residues may be related to hindered lateral aggregation of protofibrils in fibrin gels. 相似文献
35.
R V Iozzo I Kovalszky N Hacobian P K Schick J S Ellingson G R Dodge 《The Journal of biological chemistry》1990,265(32):19980-19989
A number of transmembrane proteins have been recently reported to be modified by the covalent addition of saturated fatty acids which may contribute to membrane targeting and specific protein-lipid interactions. Such modifications have not been reported in cell-associated heparan sulfate proteoglycans, although these macromolecules are known to be hydrophobic. Here, we report that a cell surface heparan sulfate proteoglycan is acylated with both myristate and palmitate, two long-chain saturated fatty acids. When colon carcinoma cells were labeled with [3H]myristic acid, a significant proportion of the label was shown to be specifically incorporated into the protein core of the proteoglycan. Characterization of fatty acyl moiety in the purified proteoglycan by reverse-phase high pressure liquid chromatography revealed that approximately 60% of the covalently bound fatty acids was myristate. We further show that this relatively rare 14-carbon fatty acid was bound to the protein core via a hydroxylamine- and alkali-resistant amide bond. The remaining 40% was the more common 16-carbon palmitate, which was bound via a hydroxylamine- and alkali-sensitive thioester bond. Palmitate appeared to be added post-translationally and derived in part from intracellular elongation of myristate, a process that occurred within the first two hours and was insensitive to inhibition of protein synthesis. Acylation of heparan sulfate proteoglycan represents a novel modification of this gene product and could play a role in a number of biological functions including specific interactions with membrane receptors and ligand stabilization. 相似文献
36.
How sea level change mediates genetic divergence in coastal species across regions with varying tectonic and sediment processes 下载免费PDF全文
Greer A. Dolby Ryan A. Ellingson Lloyd T. Findley David K. Jacobs 《Molecular ecology》2018,27(4):994-1011
Plate tectonics and sediment processes control regional continental shelf topography. We examine the genetic consequences of how glacial‐associated sea level change interacted with variable nearshore topography since the last glaciation. We reconstructed the size and distribution of areas suitable for tidal estuary formation from the last glacial maximum, ~20 thousand years ago, to present from San Francisco, California, USA (~38°N) to Reforma, Sinaloa, Mexico (~25°N). We assessed range‐wide genetic structure and diversity of three codistributed tidal estuarine fishes (California Killifish, Shadow Goby, Longjaw Mudsucker) along ~4,600 km using mitochondrial control region and cytB sequence, and 16–20 microsatellite loci from a total of 524 individuals. Results show that glacial‐associated sea level change limited estuarine habitat to few, widely separated refugia at glacial lowstand, and present‐day genetic clades were sourced from specific refugia. Habitat increased during postglacial sea level rise and refugial populations admixed in newly formed habitats. Continental shelves with active tectonics and/or low sediment supply were steep and hosted fewer, smaller refugia with more genetically differentiated populations than on broader shelves. Approximate Bayesian computation favoured the refuge–recolonization scenarios from habitat models over isolation by distance and seaway alternatives, indicating isolation at lowstand is a major diversification mechanism among these estuarine (and perhaps other) coastal species. Because sea level change is a global phenomenon, we suggest this top‐down physical control of extirpation–isolation–recolonization may be an important driver of genetic diversification in coastal taxa inhabiting other topographically complex coasts globally during the Mid‐ to Late Pleistocene and deeper timescales. 相似文献
37.
Purpose
In the present study we investigated a combination of diffusion tensor imaging (DTI) and magnetic resonance spectroscopic (MRS) biomarkers in order to predict neurological impairment in patients with cervical spondylosis.Methods
Twenty-seven patients with cervical spondylosis were evaluated. DTI and single voxel MRS were performed in the cervical cord. N-acetylaspartate (NAA) and choline (Cho) metabolite concentration ratios with respect to creatine were quantified, as well as the ratio of choline to NAA. The modified mJOA scale was used as a measure of neurologic deficit. Linear regression was performed between DTI and MRS parameters and mJOA scores. Significant predictors from linear regression were used in a multiple linear regression model in order to improve prediction of mJOA. Parameters that did not add value to model performance were removed, then an optimized multiparametric model was established to predict mJOA.Results
Significant correlations were observed between the Torg-Pavlov ratio and FA (R2 = 0.2021, P = 0.019); DTI fiber tract density and FA, MD, Cho/NAA (R2 = 0.3412, P = 0.0014; R2 = 0.2112, P = 0.016; and R2 = 0.2352, P = 0.010 respectively); along with FA and Cho/NAA (R2 = 0.1695, P = 0.033). DTI fiber tract density, MD and FA at the site of compression, along with Cho/NAA at C2, were significantly correlated with mJOA score (R2 = 0.05939, P < 0.0001; R2 = 0.4739, P < 0.0001; R2 = 0.7034, P < 0.0001; R2 = 0.4649, P < 0.0001). A combination biomarker consisting of DTI fiber tract density, MD, and Cho/NAA showed the best prediction of mJOA (R2 = 0.8274, P<0.0001), with post-hoc tests suggesting fiber tract density, MD, and Cho/NAA were all significant contributors to predicting mJOA (P = 0.00053, P = 0.00085, and P = 0.0019, respectively).Conclusion
A linear combination of DTI and MRS measurements within the cervical spinal cord may be useful for accurately predicting neurological deficits in patients with cervical spondylosis. Additional studies may be necessary to validate these observations. 相似文献38.
We determined the expression of three myelin-typical lipids in the continuous CG-4 glial cell line of oligodendrocyte progenitor cells, as the cells differentiated into oligodendrocytes. On 6 different days during the first 9 days of oligodendrocyte development, cells were labeled for 24 h with [3H]ethanolamine to label ethanolamine plasmalogens or with [3H]galactose to label the galactocerebroside and sulfogalactocerebroside; and the amount of labeled lipid expressed on each day was determined. Each labeled lipid was expressed with its own specific time course and in a defined amount on each day of differentiation. Increased labeling of plasmalogens and sulfogalactocerebroside started at early developmental stages, and increased labeling of galactocerebroside started at later stages. The results indicate that the differentiating CG-4 cell line provides a valuable system to investigate factors affecting the early time course of myelin-lipid expression and the amounts expressed. 相似文献
39.
Unfiltered broad spectrum radiation emitted by black light, cool white, and black light blue fluorescent lamps and a sunlamp, is both toxic and mutagenic to L5178Y mouse lymphoma cells when the cells are irradiated in phosphate-buffered saline. The increase in mutant frequency seen after exposure of the cells is linear throughout the range of exposures tested. The linear increase in mutagenesis is observed even at exposure levels which do not cause significant toxicity. To facilitate comparison of the differing rates of mutagenesis derived from exposure-response curves obtained for each light source, we have defined a parameter, joule-equivalent mutagenesis (jem), equal to mutants per 10(5) survivors per joule per square meter. Jem values are calculated using the integrated irradiance of each lamp. Based on jem values, the relative mutagenicity of the various lamps tested (compared with a germicidal ultraviolet lamp) is 3 x 10(-3) for the sunlamp, 1 x 10(-4) for the black light and cool white lamps, and 3 x 10(-5) for the black light blue lamp. The toxic and mutagenic effects of the lamps are in reasonable agreement with their relative spectral output from 290 to 330 nm. 相似文献
40.
Chongwen Li Zhaoning Song Dewei Zhao Chuanxiao Xiao Biwas Subedi Niraj Shrestha Maxwell M. Junda Changlei Wang Chun‐Sheng Jiang Mowafak Al‐Jassim Randy J. Ellingson Nikolas J. Podraza Kai Zhu Yanfa Yan 《Liver Transplantation》2019,9(3)
The unsatisfactory performance of low‐bandgap mixed tin (Sn)–lead (Pb) halide perovskite subcells has been one of the major obstacles hindering the progress of the power conversion efficiencies (PCEs) of all‐perovskite tandem solar cells. By analyzing dark‐current density and distribution, it is identified that charge recombination at grain boundaries is a key factor limiting the performance of low‐bandgap mixed Sn–Pb halide perovskite subcells. It is further found that bromine (Br) incorporation can effectively passivate grain boundaries and lower the dark current density by two–three orders of magnitude. By optimizing the Br concentration, low‐bandgap (1.272 eV) mixed Sn–Pb halide perovskite solar cells are fabricated with open‐circuit voltage deficits as low as 0.384 V and fill factors as high as 75%. The best‐performing device demonstrates a PCE of >19%. The results suggest an important direction for improving the performance of low‐bandgap mixed Sn–Pb halide perovskite solar cells. 相似文献