首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   5篇
  2021年   1篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   3篇
  2011年   3篇
  2010年   6篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   6篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1977年   2篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
31.

Background  

Nitric oxide and prostaglandin E2 (PGE2play pivotal roles in both the pathogenesis of osteoarthritis and catabolic processes in articular cartilage. These mediators are influenced by both IL-1β and mechanical loading, and involve alterations in the inducible nitric oxide synthase (iNOS) and cyclo-oxygenase (COX)-2 enzymes. To identify the specific interactions that are activated by both types of stimuli, we examined the effects of dynamic compression on levels of expression of iNOS and COX-2 and involvement of the p38 mitogen-activated protein kinase (MAPK) pathway.  相似文献   
32.
L-selectin is a calcium-dependent lectin on leukocytes mediating leukocyte rolling in high endothelial venules and inflamed microvessels. Many selectin ligands require modification of glycoproteins by leukocyte core2 beta1,6-N-acetylglucosaminyltransferase (Core2GlcNAcT-I). To test the role of Core2GlcNAcT-I for L-selectin ligand biosynthesis, we investigated leukocyte rolling in venules of untreated and TNF-alpha-treated cremaster muscles and in Peyer's patch high endothelial venules (HEV) of Core2GlcNAcT-I null (core2(-/-)) mice. In the presence of blocking mAbs against P- and E-selectin, L-selectin-mediated leukocyte rolling was almost completely abolished in cremaster muscle venules of core2(-/-) mice, but not littermate control mice. By contrast, leukocyte rolling in Peyer's patch HEV was not significantly different between core2(-/-) and control mice. To probe L-selectin ligands more directly, we injected L-selectin-coated beads. These beads showed no rolling in cremaster muscle venules of core2(-/-) mice, but significant rolling in controls. In Peyer's patch HEV, beads coated with a low concentration of L-selectin showed reduced rolling in core2(-/-) mice. Beads coated with a 10-fold higher concentration of L-selectin rolled equivalently in core2(-/-) and control mice. Our data show that endothelial L-selectin ligands relevant for rolling in inflamed microvessels of the cremaster muscle are completely Core2GlcNAcT-I dependent. In contrast, L-selectin ligands in Peyer's patch HEV are only marginally affected by the absence of Core2GlcNAcT-I, but are sufficiently functional to support L-selectin-dependent leukocyte rolling in Core2GlcNAcT-I-deficient mice.  相似文献   
33.
The ability to genetically manipulate mice has led to rapid progress in our understanding of the roles of different gene products in human disease. Transgenic mice have often been created in the FVB/NJ (FVB) strain due to its high fecundity, while gene-targeted mice have been developed in the 129/SvJ-C57Bl/6J strains due to the capacity of 129/SvJ embryonic stem cells to facilitate germline transmission. Gene-targeted mice are commonly backcrossed into the C57Bl/6J (B6) background for comparison with existing data. Genetic modifiers have been shown to modulate mammary tumor latency in mouse models of breast cancer and it is commonly known that the FVB strain is susceptible to mammary tumors while the B6 strain is more resistant. Since gene-targeted mice in the B6 background are frequently bred into the polyomavirus middle T (PyMT) mouse model of breast cancer in the FVB strain, we have sought to understand the impact of the different genetic backgrounds on the resulting phenotype. We bred mice deficient in the inducible nitric oxide synthase (iNOS) until they were congenic in the PyMT model in the FVB and B6 strains. Our results reveal that the large difference in mean tumor latencies in the two backgrounds of 53 and 92 days respectively affect the ability to discern smaller differences in latency due to the Nos2 genetic mutation. Furthermore, the longer latency in the B6 strain enables a more detailed analysis of tumor formation indicating that individual tumor development is not stoichastic, but is initiated in the #1 glands and proceeds in early and late phases. NO production affects tumors that develop early suggesting an association of iNOS-induced NO with a more aggressive tumor phenotype, consistent with human clinical data positively correlating iNOS expression with breast cancer progression. An examination of lung metastases, which are significantly reduced in PyMT/iNOS−/− mice compared with PyMT/iNOS+/+ mice only in the B6 background, is concordant with these findings. Our data suggest that PyMT in the B6 background provides a useful model for the study of inflammation-induced breast cancer.  相似文献   
34.
Computer analyses of the entire GenBank database were conducted to examine correlation between splicing sites and codon positions in reading frames. Intron insertion patterns (i.e., splicing site locations with respect to codon positions) have been analyzed for all of the 74 codons of all the eukaryote taxonomic groups: primates, rodents mammals, vertebrates, invertebrates, and plants. We found that reading frames are interrupted by an intron at a codon boundary (as opposed to the middle of a codon) significantly more often than expected. This observation is consistent with the exon shuffling hypothesis, because exons that end at codon boundaries can be concatenated without causing a frame shift and thus are evolutionarily advantageous. On the other hand, when introns interrupt at the middles of codons, they exist in between the first and second bases much more frequently than between the second and third bases, despite the fact that boundaries between the first and second bases of codons are generally far more important than those between the second and third bases. The reason for this is not clear and yet to be explained. We also show that the length of an exon is a multiple of 3 more frequently than expected. Furthermore, the total length of two consecutive exons is also more frequently a multiple of 3. All the observations above are consistent with results recently published by Long, Rosenberg, and Gilbert (1995).   相似文献   
35.
Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of outcomes following infection. Cationic amino acid transporter 2 (CAT2) is essential for transport of L-arginine (L-Arg) into monocytic immune cells during H. pylori infection. Once within the cell, this amino acid is utilized by opposing pathways that lead to elaboration of either bactericidal nitric oxide (NO) produced from inducible NO synthase (iNOS), or hydrogen peroxide, which causes macrophage apoptosis, via arginase and the polyamine pathway. Because of its central role in controlling L-Arg availability in macrophages, we investigated the importance of CAT2 in vivo during H. pylori infection. CAT2(-/-) mice infected for 4 months exhibited decreased gastritis and increased levels of colonization compared to wild type mice. We observed suppression of gastric macrophage levels, macrophage expression of iNOS, dendritic cell activation, and expression of granulocyte-colony stimulating factor in CAT2(-/-) mice suggesting that CAT2 is involved in enhancing the innate immune response. In addition, cytokine expression in CAT2(-/-) mice was altered from an antimicrobial Th1 response to a Th2 response, indicating that the transporter has downstream effects on adaptive immunity as well. These findings demonstrate that CAT2 is an important regulator of the immune response during H. pylori infection.  相似文献   
36.
Nuclear reprogramming resets differentiated tissue to generate induced pluripotent stem (iPS) cells. While genomic attributes underlying reacquisition of the embryonic-like state have been delineated, less is known regarding the metabolic dynamics underscoring induction of pluripotency. Metabolomic profiling of fibroblasts vs. iPS cells demonstrated nuclear reprogramming-associated induction of glycolysis, realized through augmented utilization of glucose and accumulation of lactate. Real-time assessment unmasked downregulated mitochondrial reserve capacity and ATP turnover correlating with pluripotent induction. Reduction in oxygen consumption and acceleration of extracellular acidification rates represent high-throughput markers of the transition from oxidative to glycolytic metabolism, characterizing stemness acquisition. The bioenergetic transition was supported by proteome remodeling, whereby 441 proteins were altered between fibroblasts and derived iPS cells. Systems analysis revealed overrepresented canonical pathways and interactome-associated biological processes predicting differential metabolic behavior in response to reprogramming stimuli, including upregulation of glycolysis, purine, arginine, proline, ribonucleoside and ribonucleotide metabolism, and biopolymer and macromolecular catabolism, with concomitant downregulation of oxidative phosphorylation, phosphate metabolism regulation, and precursor biosynthesis processes, prioritizing the impact of energy metabolism within the hierarchy of nuclear reprogramming. Thus, metabolome and metaboproteome remodeling is integral for induction of pluripotency, expanding on the genetic and epigenetic requirements for cell fate manipulation.  相似文献   
37.
38.
The Acochlidia are unique among opisthobranch gastropods in combining extremely high morphological and ecological diversity with modest species diversity. The phylogeny of acochlidians has never been addressed by cladistic means, as their evolution has remained unknown. This study gives a first overview on more than 150 biological and morphological characters that are potentially useful for phylogenetic analysis. Based on 107 characters, a parsimony analysis (PAUP) was performed for all 27 valid acochlidian species together with 11 (plus two) outgroup taxa. The resulting strict consensus tree shows a moderate overall resolution, with at least some bootstrap support for most resolved nodes. The Acochlidia are clearly monophyletic, and originate from an unresolved basal opisthobranch level. The Acochlidia split into the Hedylopsacea (Tantulum (Hedylopsis (Pseudunela (Strubellia (‘Acochlidium’, ‘Palliohedyle’))))) and Microhedylacea (Asperspina (Pontohedyle, ‘Parhedyle’, ‘Microhedyle’, (Ganitus, Paraganitus))). The formerly enigmatic Ganitidae, resembling sacoglossan opisthobranchs by having dagger‐like rachidian radular teeth, are likely to be highly derived microhedylids. The paraphyly of some of the traditionally recognized family level taxa induced a preliminary reclassification. From the phylogenetic hypothesis obtained, we conclude that the acochlidian ancestor was marine mesopsammic. The colonization of limnic systems occurred twice, independently: first in the Caribbean (with the development of the small interstitial Tantulum elegans), and second in the Indo‐Pacific, with a radiation of large‐sized benthic acochlidian species. The evolution of extraordinary reproductive features, such as hypodermic impregnation by a complex copulative aparatus in hedylopsaceans, cutaneous insemination via spermatophores in microhedylaceans, and gonochorism in Microhedylidae s.l. (including Ganitidae), is discussed. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 124–154.  相似文献   
39.
We recently developed activatable cell-penetrating peptides (ACPPs) that target contrast agents to in vivo sites of matrix metalloproteinase activity, such as tumors. Here we use parallel in vivo and in vitro selection with phage display to identify novel tumor-homing ACPPs with no bias for primary sequence or target protease. Specifically, phage displaying a library of ACPPs were either injected into tumor-bearing mice, followed by isolation of cleaved phage from dissected tumor, or isolated based on selective cleavage by extracts of tumor versus normal tissue. Selected sequences were synthesized as fluorescently labeled peptides, and tumor-specific cleavage was confirmed by digestion with tissue extracts. The most efficiently cleaved peptide contained the substrate sequence RLQLKL and labeled tumors and metastases from several cancer models with up to 5-fold contrast. This uniquely identified ACPP was not cleaved by matrix metalloproteinases or various coagulation factors but was efficiently cleaved by plasmin and elastases, both of which have been shown to be aberrantly overexpressed in tumors. The identification of an ACPP that targets tumor expressed proteases without rational design highlights the value of unbiased selection schemes for the development of potential therapeutic agents.  相似文献   
40.
L-selectin mediates lymphocyte homing by facilitating lymphocyte adhesion to addressins expressed in the high endothelial venules (HEV) of secondary lymphoid organs. Peripheral node addressin recognized by the MECA-79 antibody is apparently part of the L-selectin ligand, but its chemical nature has been undefined. We now identify a sulfated extended core1 mucin-type O-glycan, Gal beta 1-->4(sulfo-->6)GlcNAc beta 1-->3Gal beta 1-->3GalNAc, as the MECA-79 epitope. Molecular cloning of a HEV-expressed core1-beta 1,3-N-acetylglucosaminyltransferase (Core1-beta 3GlcNAcT) enabled the construction of the 6-sulfo sialyl Lewis x on extended core1 O-glycans, recapitulating the potent L-selectin-mediated, shear-dependent adhesion observed with novel L-selectin ligands derived from core2 beta1,6-N-acetylglucosaminyltransferase-I null mice. These results identify Core1-beta 3GlcNAcT and its cognate extended core1 O-glycans as essential participants in the expression of the MECA-79-positive, HEV-specific L-selectin ligands required for lymphocyte homing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号