首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4184篇
  免费   456篇
  国内免费   1篇
  4641篇
  2023年   19篇
  2022年   32篇
  2021年   70篇
  2020年   61篇
  2019年   67篇
  2018年   83篇
  2017年   58篇
  2016年   118篇
  2015年   177篇
  2014年   190篇
  2013年   230篇
  2012年   321篇
  2011年   302篇
  2010年   162篇
  2009年   181篇
  2008年   240篇
  2007年   217篇
  2006年   227篇
  2005年   210篇
  2004年   229篇
  2003年   207篇
  2002年   211篇
  2001年   47篇
  2000年   36篇
  1999年   51篇
  1998年   71篇
  1997年   45篇
  1996年   46篇
  1995年   51篇
  1994年   38篇
  1993年   46篇
  1992年   29篇
  1991年   28篇
  1990年   41篇
  1989年   32篇
  1988年   25篇
  1987年   32篇
  1986年   23篇
  1985年   25篇
  1984年   35篇
  1983年   35篇
  1982年   30篇
  1981年   32篇
  1980年   16篇
  1979年   16篇
  1978年   16篇
  1977年   23篇
  1976年   20篇
  1975年   13篇
  1974年   17篇
排序方式: 共有4641条查询结果,搜索用时 15 毫秒
171.
Genetic variation among populations in the degree of sexual dimorphism may be a consequence of selection on one or both sexes. We analysed genetic parameters from crosses involving three populations of the dioecious plant Silene latifolia, which exhibits sexual dimorphism in flower size, to determine whether population differentiation was a result of selection on one or both sexes. We took the novel approach of comparing the ratio of population differentiation of a quantitative trait (Q(ST) ) to that of neutral genetic markers (F(ST) ) for males vs. females. We attributed 72.6% of calyx width variation in males to differences among populations vs. only 6.9% in females. The Q(ST) /F(ST) ratio was 4.2 for males vs. 0.4 for females, suggesting that selection on males is responsible for differentiation among populations in calyx width and its degree of sexual dimorphism. This selection may be indirect via genetic correlations with other morphological and physiological traits.  相似文献   
172.
Glycerol dibiphytanyl glycerol tetraether (GDGT)-based intact membrane lipids are increasingly being used as complements to conventional molecular methods in ecological studies of ammonia-oxidizing archaea (AOA) in the marine environment. However, the few studies that have been done on the detailed lipid structures synthesized by AOA in (enrichment) culture are based on species enriched from nonmarine environments, i.e., a hot spring, an aquarium filter, and a sponge. Here we have analyzed core and intact polar lipid (IPL)-GDGTs synthesized by three newly available AOA enriched directly from marine sediments taken from the San Francisco Bay estuary ("Candidatus Nitrosoarchaeum limnia"), and coastal marine sediments from Svalbard, Norway, and South Korea. Like previously screened AOA, the sedimentary AOA all synthesize crenarchaeol (a GDGT containing a cyclohexane moiety and four cyclopentane moieties) as a major core GDGT, thereby supporting the hypothesis that crenarchaeol is a biomarker lipid for AOA. The IPL headgroups synthesized by sedimentary AOA comprised mainly monohexose, dihexose, phosphohexose, and hexose-phosphohexose moieties. The hexose-phosphohexose headgroup bound to crenarchaeol was common to all enrichments and, in fact, the only IPL common to every AOA enrichment analyzed to date. This apparent specificity, in combination with its inferred lability, suggests that it may be the most suitable biomarker lipid to trace living AOA. GDGTs bound to headgroups with a mass of 180 Da of unknown structure appear to be specific to the marine group I.1a AOA: they were synthesized by all three sedimentary AOA and "Candidatus Nitrosopumilus maritimus"; however, they were absent in the group I.1b AOA "Candidatus Nitrososphaera gargensis."  相似文献   
173.

Background

TP53 mutations have been associated with resistance to anthracyclines but not to taxanes in breast cancer patients. The MDM2 promoter single nucleotide polymorphism (SNP) T309G increases MDM2 activity and may reduce wild-type p53 protein activity. Here, we explored the predictive and prognostic value of TP53 and CHEK2 mutation status together with MDM2 SNP309 genotype in stage III breast cancer patients receiving paclitaxel or epirubicin monotherapy.

Experimental Design

Each patient was randomly assigned to treatment with epirubicin 90 mg/m2 (n = 109) or paclitaxel 200 mg/m2 (n = 114) every 3rd week as monotherapy for 4–6 cycles. Patients obtaining a suboptimal response on first-line treatment requiring further chemotherapy received the opposite regimen. Time from last patient inclusion to follow-up censoring was 69 months. Each patient had snap-frozen tumor tissue specimens collected prior to commencing chemotherapy.

Principal Findings

While TP53 and CHEK2 mutations predicted resistance to epirubicin, MDM2 status did not. Neither TP53/CHEK2 mutations nor MDM2 status was associated with paclitaxel response. Remarkably, TP53 mutations (p = 0.007) but also MDM2 309TG/GG genotype status (p = 0.012) were associated with a poor disease-specific survival among patients having paclitaxel but not patients having epirubicin first-line. The effect of MDM2 status was observed among individuals harbouring wild-type TP53 (p = 0.039) but not among individuals with TP53 mutated tumors (p>0.5).

Conclusion

TP53 and CHEK2 mutations were associated with lack of response to epirubicin monotherapy. In contrast, TP53 mutations and MDM2 309G allele status conferred poor disease-specific survival among patients treated with primary paclitaxel but not epirubicin monotherapy.  相似文献   
174.
Increasing evidence points to mitochondrial dysfunction in Parkinson's disease (PD) associated with complex I dysfunction, but the exact pathways which lead to cell death have not been resolved. 2D-gel electrophoresis profiles of isolated mitochondria from neuroblastoma cells treated with subcytotoxic concentrations of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a well-characterized complex I inhibitor, were assessed to identify associated targets. Up to 27 differentially expressed proteins were observed, of which 16 were identified using peptide mass fingerprinting. Changes in protein levels were validated by immunoprobing 1D blots, confirming increases in heat shock cognate 71 kDa (Hsc70), 60 kDa heat shock protein (Hsp60), fumarase, glutamate oxaloacetate transaminase 2, ATP synthase subunit d, and voltage-dependent anion-channel 1 (VDAC1). Immunoprobing of 2D blots revealed isoform changes in Hsc70, Hsp60, and VDAC1. Subcytotoxic concentrations of MPTP modulated a host of mitochondrial proteins including chaperones, metabolic enzymes, oxidative phosphorylation-related proteins, an inner mitochondrial protein (mitofilin), and an outer mitochondrial membrane protein (VDAC1). Early changes in chaperones suggest a regulated link between complex 1 inhibition and protein folding. VDAC1, a multifunctional protein, may have a key role in signaling between mitochondria and the rest of the cell prior to cell death. Our work provides new important information of relevance to PD.  相似文献   
175.
Adult height is a classic polygenic trait of high heritability (h 2 ∼0.8). More than 180 single nucleotide polymorphisms (SNPs), identified mostly in populations of European descent, are associated with height. These variants convey modest effects and explain ∼10% of the variance in height. Discovery efforts in other populations, while limited, have revealed loci for height not previously implicated in individuals of European ancestry. Here, we performed a meta-analysis of genome-wide association (GWA) results for adult height in 20,427 individuals of African ancestry with replication in up to 16,436 African Americans. We found two novel height loci (Xp22-rs12393627, P = 3.4×10−12 and 2p14-rs4315565, P = 1.2×10−8). As a group, height associations discovered in European-ancestry samples replicate in individuals of African ancestry (P = 1.7×10−4 for overall replication). Fine-mapping of the European height loci in African-ancestry individuals showed an enrichment of SNPs that are associated with expression of nearby genes when compared to the index European height SNPs (P<0.01). Our results highlight the utility of genetic studies in non-European populations to understand the etiology of complex human diseases and traits.  相似文献   
176.
177.
The gene corresponding to mature PsaA from Streptococcus pneumoniae serotype 14 was cloned into a plasmid with kanamycin resistance and without a purification tag in Escherichia coli to express high levels of the recombinant protein for large-scale production as a potential vaccine candidate or as a carrier for polysaccharide conjugation at Bio-Manguinhos/Fiocruz. The evaluation of induction conditions (IPTG concentration, temperature and time) in E. coli was accomplished by experimental design techniques to enhance the expression level of mature recombinant PsaA (rPsaA). The optimization of induction process conditions led us to perform the recombinant protein induction at 25°C for 16 h, with 0.1mM IPTG in Terrific Broth medium. At these conditions, the level of mature rPsaA expression obtained in E. coli BL21 (DE3) Star by pET28a induction with IPTG was in the range of 0.8 g/L of culture medium, with a 10-fold lower concentration of inducer than usually employed, which contributes to a less expensive process. Mature rPsaA expressed in E. coli BL21 (DE3) Star accounted for approximately 30-35% of the total protein. rPsaA purification by ion exchange allowed the production of high-purity recombinant protein without fusion tags. The results presented in this work confirm that the purified recombinant protein maintains its stability and integrity for long periods of time in various storage conditions (temperatures of 4 or -70°C using different cryoprotectors) and for at least 3 years at 4 or -70°C in PBS. The conformation of the stored protein was confirmed using circular dichroism. Mature rPsaA antigenicity was proven by anti-rPsaA mouse serum recognition through western blot analysis, and no protein degradation was detected after long periods of storage.  相似文献   
178.
179.
Modulation of antibody responses induced by IgM directed against the immunogen was investigated. When IgM directed against ox erythrocytes (ORBC) was given together with trinitrophenyl (TNP)-ORBC, the subsequent antibody response to the carrier, ORBC, as well as the response to the hapten, TNP, was potentiated. In contrast, IgG with carrier specificity inhibited both responses. The hapten-specific potentiation was found in both direct and indirect plaques, and was antigen-dose dependent, i.e., no potentiation was found with the lowest antigen doses. The response to 2,4-dinitrophenyl (DNP)-labeled proteins was potentiated by a monoclonal IgM with specificity for the hapten. The effects were observed both in primary and secondary responses. One strict requirement for IgM potentiation to occur was observed. The determinant against which potentiation was achieved had to be physically linked to the determinant against which the IgM was directed, be it hapten or carrier determinants. Thus, irrelevant IgM-antigen complexes were incapable of potentiating the responses. Similar specificity requirements were found for IgG induced suppression of antibody responses. Experiments with nude mice and their euthymic littermates showed that IgM potentiation of antibody production is T-cell dependent. Furthermore, passive transfer of carrier-primed spleen cells together with antigen challenge suggests that IgM potentiation of secondary antibody responses is dependent on specific carrier-primed immune T cells.  相似文献   
180.
Split hand/split foot (SHFD) is a human developmental defect characterized by missing digits, fusion of remaining digits, and a deep median cleft in the hands and feet. Cytogenetic studies of deletions and translocations associated with this disorder have indicated that an autosomal dominant split hand/split foot locus (gene SHFD1) maps to 7q21-q22. To characterize the SHFD1 locus, somatic cell hybrid lines were constructed from cytogenetically abnormal individuals with SHFD. Molecular analysis resulted in the localization of 93 DNA markers to one of 10 intervals surrounding the SHFD1 locus. The translocation breakpoints in four SHFD patients were encompassed by the smallest region of overlap among the SHFD-associated deletions. The order of DNA markers in the SHFD1 critical region has been defined as PON–D7S812–SHFD1–D7S811–ASNS. One DNA marker, D7S811, detected altered restriction enzyme fragments in three patients with translocations when examined by pulsed-field gel electro-phoresis (PFGE). These data map SHFD1, a gene that is crucial for human limb differentiation, to a small interval in the q21.3-q22.1 region of human chromosome 7.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号