全文获取类型
收费全文 | 4043篇 |
免费 | 409篇 |
国内免费 | 1篇 |
专业分类
4453篇 |
出版年
2023年 | 19篇 |
2022年 | 31篇 |
2021年 | 68篇 |
2020年 | 59篇 |
2019年 | 67篇 |
2018年 | 79篇 |
2017年 | 56篇 |
2016年 | 117篇 |
2015年 | 175篇 |
2014年 | 183篇 |
2013年 | 222篇 |
2012年 | 311篇 |
2011年 | 294篇 |
2010年 | 158篇 |
2009年 | 176篇 |
2008年 | 235篇 |
2007年 | 211篇 |
2006年 | 220篇 |
2005年 | 207篇 |
2004年 | 222篇 |
2003年 | 200篇 |
2002年 | 208篇 |
2001年 | 39篇 |
2000年 | 32篇 |
1999年 | 48篇 |
1998年 | 66篇 |
1997年 | 43篇 |
1996年 | 45篇 |
1995年 | 50篇 |
1994年 | 35篇 |
1993年 | 45篇 |
1992年 | 27篇 |
1991年 | 27篇 |
1990年 | 39篇 |
1989年 | 26篇 |
1988年 | 24篇 |
1987年 | 28篇 |
1986年 | 18篇 |
1985年 | 22篇 |
1984年 | 31篇 |
1983年 | 30篇 |
1982年 | 28篇 |
1981年 | 32篇 |
1980年 | 14篇 |
1979年 | 13篇 |
1978年 | 14篇 |
1977年 | 19篇 |
1976年 | 19篇 |
1974年 | 14篇 |
1973年 | 9篇 |
排序方式: 共有4453条查询结果,搜索用时 15 毫秒
171.
Loss of Bard1, the heterodimeric partner of the Brca1 tumor suppressor,results in early embryonic lethality and chromosomal instability 下载免费PDF全文
The BRCA1 tumor suppressor has been implicated in many cellular pathways, but the mechanisms by which it suppresses tumor formation are not fully understood. In vivo BRCA1 forms a heterodimeric complex with the related BARD1 protein, and its enzymatic activity as a ubiquitin ligase is largely dependent upon its interaction with BARD1. To explore the genetic relationship between BRCA1 and BARD1, we have examined the phenotype of Bard1-null mice. These mice become developmentally retarded and die between embryonic day 7.5 (E7.5) and E8.5. Embryonic lethality results from a severe impairment of cell proliferation that is not accompanied by increased apoptosis. In the absence of p53, the developmental defects associated with Bard1 deficiency are partly ameliorated, and the lethality of Bard1; p53-nullizygous mice is delayed until E9.5. This result, together with the increased chromosomal aneuploidy of Bard1 mutant cells, indicates a role for Bard1 in maintaining genomic stability. The striking similarities between the phenotypes of Bard1-null, Brca1-null, and double Bard1; Brca1-null mice provide strong genetic evidence that the developmental functions of Brca1 and Bard1 are mediated by the Brca1/Bard1 heterodimer. 相似文献
172.
Global Analysis of Apicomplexan Protein S‐Acyl Transferases Reveals an Enzyme Essential for Invasion
Karine Frénal Chwen L. Tay Christina Mueller Ellen S. Bushell Yonggen Jia Arnault Graindorge Oliver Billker Julian C. Rayner Dominique Soldati‐Favre 《Traffic (Copenhagen, Denmark)》2013,14(8):895-911
The advent of techniques to study palmitoylation on a whole proteome scale has revealed that it is an important reversible modification that plays a role in regulating multiple biological processes. Palmitoylation can control the affinity of a protein for lipid membranes, which allows it to impact protein trafficking, stability, folding, signalling and interactions. The publication of the palmitome of the schizont stage of Plasmodium falciparum implicated a role for palmitoylation in host cell invasion, protein export and organelle biogenesis. However, nothing is known so far about the repertoire of protein S‐acyl transferases (PATs) that catalyse this modification in Apicomplexa. We undertook a comprehensive analysis of the repertoire of Asp‐His‐His‐Cys cysteine‐rich domain (DHHC‐CRD) PAT family in Toxoplasma gondii and Plasmodium berghei by assessing their localization and essentiality. Unlike functional redundancies reported in other eukaryotes, some apicomplexan‐specific DHHCs are essential for parasite growth, and several are targeted to organelles unique to this phylum. Of particular interest is DHHC7, which localizes to rhoptry organelles in all parasites tested, including the major human pathogen P. falciparum. TgDHHC7 interferes with the localization of the rhoptry palmitoylated protein TgARO and affects the apical positioning of the rhoptry organelles. This PAT has a major impact on T. gondii host cell invasion, but not on the parasite's ability to egress. 相似文献
173.
Ellen?M?Unterwald Michelle?E?Page Timothy?B?Brown Jonathan?S?Miller Marta?Ruiz Karen?A?Pescatore Baoji?Xu Louis?French?Reichardt Joel?Beverley Bin?Tang Heinz?Steiner Elizabeth?A?Thomas Michelle?E?EhrlichEmail author 《Molecular neurodegeneration》2013,8(1):47
Background
The high affinity tyrosine kinase receptor, TrkB, is the primary receptor for brain derived neurotrophic factor (BDNF) and plays an important role in development, maintenance and plasticity of the striatal output medium size spiny neuron. The striatal BDNF/TrkB system is thereby implicated in many physiologic and pathophysiologic processes, the latter including mood disorders, addiction, and Huntington’s disease. We crossed a mouse harboring a transgene directing cre-recombinase expression primarily to postnatal, dorsal striatal medium spiny neurons, to a mouse containing a floxed TrkB allele (fB) mouse designed for deletion of TrkB to determine its role in the adult striatum.Results
We found that there were sexually dimorphic alterations in behaviors in response to stressful situations and drugs of abuse. Significant sex and/or genotype differences were found in the forced swim test of depression-like behaviors, anxiety-like behaviors on the elevated plus maze, and cocaine conditioned reward. Microarray analysis of dorsal striatum revealed significant dysregulation in individual and groups of genes that may contribute to the observed behavioral responses and in some cases, represent previously unidentified downstream targets of TrkB.Conclusions
The data point to a set of behaviors and changes in gene expression following postnatal deletion of TrkB in the dorsal striatum distinct from those in other brain regions.174.
Biological Control of Damping-Off of Alfalfa Seedlings with Bacillus cereus UW85 总被引:4,自引:4,他引:4 下载免费PDF全文
Jo Handelsman Sandra Raffel Ellen H. Mester Lynn Wunderlich Craig R. Grau 《Applied microbiology》1990,56(3):713-718
We explored the potential of biological control of alfalfa (Medicago sativa L.) seedling damping-off caused by Phytophthora megasperma f. sp. medicaginis by screening root-associated bacteria for disease suppression activity in a laboratory bioassay. A total of 700 bacterial strains were isolated from the roots of field-grown alfalfa plants by using Trypticase soy agar. A simple, rapid assay was developed to screen the bacteria for the ability to reduce the mortality of Iroquois alfalfa seedlings that were inoculated with P. megasperma f. sp. medicaginis zoospores. Two-day-old seedlings were planted in culture tubes containing moist vermiculite, and each tube was inoculated with a different bacterial culture. Sufficient P. megasperma f. sp. medicaginis zoospores were added to each tube to result in 100% mortality of control seedlings. Of the 700 bacterial isolates tested, only 1, which was identified as Bacillus cereus and designated UW85, reduced seedling mortality to 0% in the initial screen and in two secondary screens. Both fully sporulated cultures containing predominantly released spores and sterile filtrates of these cultures of UW85 were effective in protecting seedlings from damping-off; filtrates of cultures containing predominantly vegetative cells or endospores inside the parent cell had low biocontrol activity. Cultures grown in two semidefined media had significantly greater biocontrol activities than cultures grown in the complex tryptic soy medium. In a small-scale trial in a field infested with P. megasperma f. sp. medicaginis, coating seeds with UW85 significantly increased the emergence of alfalfa. The results suggest that UW85 may have potential as a biocontrol agent for alfalfa damping-off, thus providing an alternative to current disease control strategies. 相似文献
175.
Dopaminergic neurotransmission in the nucleus accumbens is important for various reward‐related cognitive processes including reinforcement learning. Repeated cocaine enhances hippocampal synaptic plasticity, and phasic elevations of accumbal dopamine evoked by unconditioned stimuli are dependent on impulse flow from the ventral hippocampus. Therefore, sensitized hippocampal activity may be one mechanism by which drugs of abuse enhance limbic dopaminergic activity. In this study, in vivo microdialysis in freely moving adult male Sprague–Dawley rats was used to investigate the effect of repeated cocaine on ventral hippocampus‐mediated dopaminergic transmission within the medial shell of the nucleus accumbens. Following seven daily injections of saline or cocaine (20 mg/kg, ip), unilateral infusion of N‐methyl‐d ‐aspartate (NMDA, 0.5 μg) into the ventral hippocampus transiently increased both motoric activity and ipsilateral dopamine efflux in the medial shell of the nucleus accumbens, and this effect was greater in rats that received repeated cocaine compared to controls that received repeated saline. In addition, repeated cocaine altered NMDA receptor subunit expression in the ventral hippocampus, reducing the NR2A : NR2B subunit ratio. Together, these results suggest that repeated exposure to cocaine produces maladaptive ventral hippocampal‐nucleus accumbens communication, in part through changes in glutamate receptor composition.
176.
Dikla Bandah-Rozenfeld Rob W.J. Collin Eyal Banin Karlien L.M. Coene Anna M. Siemiatkowska Lina Zelinger Dirk J. Lefeber Inbar Erdinest Francesca Simonelli Ellen A.W. Blokland Caroline C.W. Klaver Raheel Qamar Sandro Banfi Dror Sharon Anneke I. den Hollander 《American journal of human genetics》2010,87(2):199-208
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal diseases caused by progressive degeneration of the photoreceptor cells. Using autozygosity mapping, we identified two families, each with three affected siblings sharing large overlapping homozygous regions that harbored the IMPG2 gene on chromosome 3. Sequence analysis of IMPG2 in the two index cases revealed homozygous mutations cosegregating with the disease in the respective families: three affected siblings of Iraqi Jewish ancestry displayed a nonsense mutation, and a Dutch family displayed a 1.8 kb genomic deletion that removes exon 9 and results in the absence of seven amino acids in a conserved SEA domain of the IMPG2 protein. Transient transfection of COS-1 cells showed that a construct expressing the wild-type SEA domain is properly targeted to the plasma membrane, whereas the mutant lacking the seven amino acids appears to be retained in the endoplasmic reticulum. Mutation analysis in ten additional index cases that were of Dutch, Israeli, Italian, and Pakistani origin and had homozygous regions encompassing IMPG2 revealed five additional mutations; four nonsense mutations and one missense mutation affecting a highly conserved phenylalanine residue. Most patients with IMPG2 mutations showed an early-onset form of RP with progressive visual-field loss and deterioration of visual acuity. The patient with the missense mutation, however, was diagnosed with maculopathy. The IMPG2 gene encodes the interphotoreceptor matrix proteoglycan IMPG2, which is a constituent of the interphotoreceptor matrix. Our data therefore show that mutations in a structural component of the interphotoreceptor matrix can cause arRP. 相似文献
177.
Ellen L. Danneels Sarah Gerlo Karen Heyninck Kathleen Van Craenenbroeck Karolien De Bosscher Guy Haegeman Dirk C. de Graaf 《PloS one》2014,9(5)
With more than 150,000 species, parasitoids are a large group of hymenopteran insects that inject venom into and then lay their eggs in or on other insects, eventually killing the hosts. Their venoms have evolved into different mechanisms for manipulating host immunity, physiology and behavior in such a way that enhance development of the parasitoid young. The venom from the ectoparasitoid Nasonia vitripennis inhibits the immune system in its host organism in order to protect their offspring from elimination. Since the major innate immune pathways in insects, the Toll and Imd pathways, are homologous to the NF-κB pathway in mammals, we were interested in whether a similar immune suppression seen in insects could be elicited in a mammalian cell system. A well characterized NF-κB reporter gene assay in fibrosarcoma cells showed a dose-dependent inhibition of NF-κB signaling caused by the venom. In line with this NF-κB inhibitory action, N. vitripennis venom dampened the expression of IL-6, a prototypical proinflammatory cytokine, from LPS-treated macrophages. The venom also inhibited the expression of two NF-κB target genes, IκBα and A20, that act in a negative feedback loop to prevent excessive NF-κB activity. Surprisingly, we did not detect any effect of the venom on the early events in the canonical NF-κB activation pathway, leading to NF-κB nuclear translocation, which was unaltered in venom-treated cells. The MAP kinases ERK, p38 and JNK are other crucial regulators of immune responses. We observed that venom treatment did not affect p38 and ERK activation, but induced a prolonged JNK activation. In summary, our data indicate that venom from N. vitripennis inhibits NF-κB signaling in mammalian cells. We identify venom-induced up regulation of the glucocorticoid receptor-regulated GILZ as a most likely molecular mediator for this inhibition. 相似文献
178.
We have suggested previously that the amino-terminal 8 kilodaltons of pp60src may serve as a structural hydrophobic domain through which pp60src attaches to plasma membranes. Two isolates of recovered avian sarcoma viruses (rASVs), 1702 and 157, encode pp60src proteins that have alterations in this amino-terminal region. The rASV 1702 src protein (56 kilodaltons) and the 157 src protein (62.5 kilodaltons) show altered membrane association, and fractionate largely as soluble, cytoplasmic proteins in aqueous buffers, in contrast with the membrane association of more than 80% of the src protein of standard avian sarcoma virus under the identical fractionation procedure. Plasma membranes purified from cells transformed by these rASVs contain less than 10% of the amount of pp60src found in membranes purified from cells transformed by Rous sarcoma virus or control rASVs. The altered membrane association of these src proteins had little or no effect on the properties of chick embryo fibroblasts transformed in monolayer culture. In contrast, rASV 1702 showed reduced in vivo tumorigenicity compared with Rous sarcoma virus or with other rASVs that encode membrane-associated src proteins. Rous sarcoma virus-induced tumors are malignant, poorly differentiated sarcomas that are lethal to their hosts. rASV 1702 induces a benign, differentiated sarcoma that regresses and is not lethal to its hosts. These data support the role of amino-terminal sequences in the membrane association of pp60src, and suggest that the amino terminus of pp60src may have a critical role in the promotion of in vivo tumorigenicity. 相似文献
179.
Adequate differentiation or decidualization of endometrial stromal cells (ESC) is critical for successful pregnancy in humans and rodents. Here, we investigated the role of leukemia inhibitory factor (LIF) in human and murine decidualization. Ex vivo human (H) ESC decidualization was induced by estrogen (E, 10−8 M) plus medroxyprogesterone acetate (MPA, 10−7 M). Exogenous LIF (≥50 ng/ml) induced STAT3 phosphorylation in non-decidualized and decidualized HESC and enhanced E+MPA-induced decidualization (measured by PRL secretion, P<0.05). LIF mRNA in HESC was down-regulated by decidualization treatment (E+MPA) whereas LIF receptor (R) mRNA was up-regulated, suggesting that the decidualization stimulus ‘primed’ HESC for LIF action, but that factors not present in our in vitro model were required to induce LIF expression. Ex vivo first trimester decidual biopsies secreted >100 pg/mg G-CSF, IL6, IL8, and MCP1. Decidualized HESC secreted IL6, IL8, IL15 and MCP1. LIF (50 ng/ml) up-regulated IL6 and IL15 (P<0.05) secretion in decidualized HESC compared to 0.5 ng/ml LIF. In murine endometrium, LIF and LIFR immunolocalized to decidualized stromal cells on day 5 of gestation (day 0 = day of plug detection). Western blotting confirmed that LIF and the LIFR were up-regulated in intra-implantation sites compared to inter-implantation sites on Day 5 of gestation. To determine the role of LIF during in vivo murine decidualization, intra-peritoneal injections of a long-acting LIF antagonist (PEGLA; 900 or 1200 µg) were given just post-attachment, during the initiation of decidualization on day 4. PEGLA treatment reduced implantation site decidual area (P<0.05) and desmin staining immuno-intensity (P<0.05) compared to control on day 6 of gestation. This study demonstrated that LIF was an important regulator of decidualization in humans and mice and data provides insight into the processes underlying decidualization, which are important for understanding implantation and placentation. 相似文献
180.
Gewurz BE Mar JC Padi M Zhao B Shinners NP Takasaki K Bedoya E Zou JY Cahir-McFarland E Quackenbush J Kieff E 《Journal of virology》2011,85(13):6764-6773
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) transforms rodent fibroblasts and is expressed in most EBV-associated malignancies. LMP1 (transformation effector site 2 [TES2]/C-terminal activation region 2 [CTAR2]) activates NF-κB, p38, Jun N-terminal protein kinase (JNK), extracellular signal-regulated kinase (ERK), and interferon regulatory factor 7 (IRF7) pathways. We have investigated LMP1 TES2 genome-wide RNA effects at 4 time points after LMP1 TES2 expression in HEK-293 cells. By using a false discovery rate (FDR) of <0.001 after correction for multiple hypotheses, LMP1 TES2 caused >2-fold changes in 1,916 mRNAs; 1,479 RNAs were upregulated and 437 were downregulated. In contrast to tumor necrosis factor alpha (TNF-α) stimulation, which transiently upregulates many target genes, LMP1 TES2 maintained most RNA effects through the time course, despite robust and sustained induction of negative feedback regulators, such as IκBα and A20. LMP1 TES2-regulated RNAs encode many NF-κB signaling proteins and secondary interacting proteins. Consequently, many LMP1 TES2-regulated RNAs encode proteins that form an extensive interactome. Gene set enrichment analyses found LMP1 TES2-upregulated genes to be significantly enriched for pathways in cancer, B- and T-cell receptor signaling, and Toll-like receptor signaling. Surprisingly, LMP1 TES2 and IκBα superrepressor coexpression decreased LMP1 TES2 RNA effects to only 5 RNAs, with FDRs of <0.001-fold and >2-fold changes. Thus, canonical NF-κB activation is critical for almost all LMP1 TES2 RNA effects in HEK-293 cells and a more significant therapeutic target than previously appreciated. 相似文献