首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4041篇
  免费   410篇
  国内免费   1篇
  4452篇
  2023年   19篇
  2022年   31篇
  2021年   68篇
  2020年   59篇
  2019年   67篇
  2018年   79篇
  2017年   56篇
  2016年   117篇
  2015年   174篇
  2014年   183篇
  2013年   222篇
  2012年   311篇
  2011年   294篇
  2010年   158篇
  2009年   176篇
  2008年   235篇
  2007年   211篇
  2006年   220篇
  2005年   207篇
  2004年   222篇
  2003年   200篇
  2002年   208篇
  2001年   39篇
  2000年   32篇
  1999年   48篇
  1998年   66篇
  1997年   43篇
  1996年   45篇
  1995年   50篇
  1994年   35篇
  1993年   45篇
  1992年   27篇
  1991年   27篇
  1990年   39篇
  1989年   26篇
  1988年   24篇
  1987年   28篇
  1986年   18篇
  1985年   22篇
  1984年   31篇
  1983年   30篇
  1982年   28篇
  1981年   32篇
  1980年   14篇
  1979年   13篇
  1978年   14篇
  1977年   19篇
  1976年   19篇
  1974年   14篇
  1973年   9篇
排序方式: 共有4452条查询结果,搜索用时 0 毫秒
991.
Phospholipid packing has been suggested as a relevant variable in the control of membrane fusion events. To test this possibility in a model system, a comparison was made of the fusability of erythrocytes with a normal asymmetric transbilayer distribution of plasma membrane phospholipids (tightly packed exterior lipids) and erythrocytes with a symmetric transbilayer distribution of phospholipids (more loosely packed exterior lipids), using polyethylene glycol as fusogen. Not only were lipid-symmetric cells more readily fused, but fusions of mixtures of lipid-symmetric and lipid-asymmetric cells indicated that both fusing partners must have a symmetric distribution for fusion to be enhanced. Lipid-symmetric cells may fuse more readily because loose packing of the exterior lipids enhances hydrophobic interactions between cells. Alternatively, enhanced membrane fluidity may facilitate intramembranous particle clustering, previously implicated as a potentiator of fusion. Finally, exposure of phosphatidylserine on the surface of lipid-symmetric erythrocytes may be responsible for their enhanced fusion.  相似文献   
992.
993.
The duplication 17p11.2 syndrome, associated with dup(17)(p11.2p11.2), is a recently recognized syndrome of multiple congenital anomalies and mental retardation and is the first predicted reciprocal microduplication syndrome described--the homologous recombination reciprocal of the Smith-Magenis syndrome (SMS) microdeletion (del(17)(p11.2p11.2)). We previously described seven subjects with dup(17)(p11.2p11.2) and noted their relatively mild phenotype compared with that of individuals with SMS. Here, we molecularly analyzed 28 additional patients, using multiple independent assays, and also report the phenotypic characteristics obtained from extensive multidisciplinary clinical study of a subset of these patients. Whereas the majority of subjects (22 of 35) harbor the homologous recombination reciprocal product of the common SMS microdeletion (~3.7 Mb), 13 subjects (~37%) have nonrecurrent duplications ranging in size from 1.3 to 15.2 Mb. Molecular studies suggest potential mechanistic differences between nonrecurrent duplications and nonrecurrent genomic deletions. Clinical features observed in patients with the common dup(17)(p11.2p11.2) are distinct from those seen with SMS and include infantile hypotonia, failure to thrive, mental retardation, autistic features, sleep apnea, and structural cardiovascular anomalies. We narrow the critical region to a 1.3-Mb genomic interval that contains the dosage-sensitive RAI1 gene. Our results refine the critical region for Potocki-Lupski syndrome, provide information to assist in clinical diagnosis and management, and lend further support for the concept that genomic architecture incites genomic instability.  相似文献   
994.
995.
We have studied the properties of mixtures of cholesterol with dioleoylphosphatidylcholine (DOPC), and with several other phospholipids, including 1-stearoyl-2-oleoylphosphatidylcholine (SOPC) and dioleoleoylphosphatidylserine (DOPS), as a function of cholesterol molar fraction and of temperature. Mixtures of DOPC with a cholesterol molar fraction of 0.4 or greater display polymorphic behavior. This polymorphism includes the formation of structures that give rise to isotropic peaks in 31P NMR at cholesterol molar fractions between 0.4 and 0.6, dependent on the thermal history of the sample. Cryo-electron microscopy studies demonstrate the formation of small globular aggregates that would contribute to a narrowing of the 31P NMR powder pattern.At molar fraction cholesterol 0.6 and higher and at temperatures above 70 degrees C, the mixtures with DOPC convert to the hexagonal phase. Lipid polymorphism is accompanied by the phase separation of cholesterol crystals in the anhydrous form and/or the monohydrate form. The crystals that are formed have substantially altered kinetics of hydration and dehydration, compared with both pure cholesterol monohydrate crystals and with crystals formed in the presence of the other phospholipids that do not form the hexagonal phase in the presence of cholesterol. This fact demonstrates that these cholesterol crystals are in intimate contact with the DOPC phospholipid and are not present as morphologically separate structures.  相似文献   
996.
Kuchin S  Vyas VK  Kanter E  Hong SP  Carlson M 《Genetics》2003,163(2):507-514
The Snf1 protein kinase of the glucose signaling pathway in Saccharomyces cerevisiae is regulated by an autoinhibitory interaction between the regulatory and catalytic domains of Snf1p. Transitions between the autoinhibited and active states are controlled by an upstream kinase and the Reg1p-Glc7p protein phosphatase 1. Previous studies suggested that Snf1 kinase activity is also modulated by Std1p (Msn3p), which interacts physically with Snf1p and also interacts with glucose sensors. Here we address the relationship between Std1p and the Snf1 kinase. Two-hybrid assays showed that Std1p interacts with the catalytic domain of Snf1p, and analysis of mutant kinases suggested that this interaction is incompatible with the autoinhibitory interaction of the regulatory and catalytic domains. Overexpression of Std1p increased the two-hybrid interaction of Snf1p with its activating subunit Snf4p, which is diagnostic of an open, uninhibited conformation of the kinase complex. Overexpression of Std1p elevated Snf1 kinase activity in both in vitro and in vivo assays. These findings suggest that Std1p stimulates the Snf1 kinase by an interaction with the catalytic domain that antagonizes autoinhibition and promotes an active conformation of the kinase.  相似文献   
997.

Objective

We investigated associations between maternal postpartum distress covering anxiety, depression and stress and childhood overweight.

Methods

We performed a prospective cohort study, including 21 121 mother-child-dyads from the Danish National Birth Cohort (DNBC). Maternal distress was measured 6 months postpartum by 9 items covering anxiety, depression and stress. Outcome was childhood overweight at 7-years-of age. Multiple logistic regression analyses were performed and information on maternal age, socioeconomic status, pre-pregnancy BMI, gestational weight gain, parity, smoking during pregnancy, paternal BMI, birth weight, gestational age at birth, sex, breastfeeding and finally infant weight at 5 and 12 month were included in the analyses.

Results

We found, that postpartum distress was not associated with childhood risk of overweight, OR 1.00, 95%CI [0.98–1.02]. Neither was anxiety, depression, or stress exposure, separately. There were no significant differences between the genders. Adjustment for potential confounders did not alter the results.

Conclusion

Maternal postpartum distress is apparently not an independent risk factor for childhood overweight at 7-years-of-age. However, we can confirm previous findings of perinatal determinants as high maternal pre-pregnancy BMI, and smoking during pregnancy being risk factors for childhood overweight.  相似文献   
998.
The nuclear pore complex (NPC) is an evolutionarily conserved structure that mediates exchange of macromolecules across the nuclear envelope (NE). It is comprised of approximately 30 proteins termed nucleoporins that are each present in multiple copies. We have investigated the function of the human nucleoporin Nup53, the ortholog of Saccharomyces cerevisiae Nup53p. Both cell fractionation and in vitro binding data suggest that Nup53 is tightly associated with the NE membrane and the lamina where it interacts with lamin B. We have also shown that Nup53 is capable of physically interacting with a group of nucleoporins including Nup93, Nup155, and Nup205. Consistent with this observation, depletion of Nup53 using small interfering RNAs causes a decrease in the cellular levels of these nucleoporins as well as the spindle checkpoint protein Mad1, likely due to destabilization of Nup53-containing complexes. The cellular depletion of this group of nucleoporins, induced by depleting either Nup53 or Nup93, severely alters nuclear morphology producing phenotypes similar to that previously observed in cells depleted of lamin A and Mad1. On basis of these data, we propose a model in which Nup53 is positioned near the pore membrane and the lamina where it anchors an NPC subcomplex containing Nup93, Nup155, and Nup205.  相似文献   
999.
We measured leaflet displacements and used inverse finite-element analysis to define, for the first time, the material properties of mitral valve (MV) leaflets in vivo. Sixteen miniature radiopaque markers were sewn to the MV annulus, 16 to the anterior MV leaflet, and 1 on each papillary muscle tip in 17 sheep. Four-dimensional coordinates were obtained from biplane videofluoroscopic marker images (60 frames/s) during three complete cardiac cycles. A finite-element model of the anterior MV leaflet was developed using marker coordinates at the end of isovolumic relaxation (IVR; when the pressure difference across the valve is approximately 0), as the minimum stress reference state. Leaflet displacements were simulated during IVR using measured left ventricular and atrial pressures. The leaflet shear modulus (G(circ-rad)) and elastic moduli in both the commisure-commisure (E(circ)) and radial (E(rad)) directions were obtained using the method of feasible directions to minimize the difference between simulated and measured displacements. Group mean (+/-SD) values (17 animals, 3 heartbeats each, i.e., 51 cardiac cycles) were as follows: G(circ-rad) = 121 +/- 22 N/mm2, E(circ) = 43 +/- 18 N/mm2, and E(rad) = 11 +/- 3 N/mm2 (E(circ) > E(rad), P < 0.01). These values, much greater than those previously reported from in vitro studies, may result from activated neurally controlled contractile tissue within the leaflet that is inactive in excised tissues. This could have important implications, not only to our understanding of mitral valve physiology in the beating heart but for providing additional information to aid the development of more durable tissue-engineered bioprosthetic valves.  相似文献   
1000.
The Asf1 and Rad6 pathways have been implicated in a number of common processes such as suppression of gross chromosomal rearrangements (GCRs), DNA repair, modification of chromatin, and proper checkpoint functions. We examined the relationship between Asf1 and different gene products implicated in postreplication repair (PRR) pathways in the suppression of GCRs, checkpoint function, sensitivity to hydroxyurea (HU) and methyl methanesulfonate (MMS), and ubiquitination of proliferating cell nuclear antigen (PCNA). We found that defects in Rad6 PRR pathway and Siz1/Srs2 homologous recombination suppression (HRS) pathway genes suppressed the increased GCR rates seen in asf1 mutants, which was independent of translesion bypass polymerases but showed an increased dependency on Dun1. Combining an asf1 deletion with different PRR mutations resulted in a synergistic increase in sensitivity to chronic HU and MMS treatment; however, these double mutants were not checkpoint defective, since they were capable of recovering from acute treatment with HU. Interestingly, we found that Asf1 and Rad6 cooperate in ubiquitination of PCNA, indicating that Rad6 and Asf1 function in parallel pathways that ubiquitinate PCNA. Our results show that ASF1 probably contributes to the maintenance of genome stability through multiple mechanisms, some of which involve the PRR and HRS pathways.DNA replication must be highly coordinated with chromatin assembly and cell division for correct propagation of genetic information and cell survival. Errors arising during DNA replication are corrected through the functions of numerous pathways including checkpoints and a diversity of DNA repair mechanisms (32, 33, 35). However, in the absence of these critical cellular responses, replication errors can lead to the accumulation of mutations and gross chromosomal rearrangements (GCRs) as well as chromosome loss, a condition generally termed genomic instability (33). Genome instability is a hallmark of many cancers as well as other human diseases (24). There are many mechanisms by which GCRs can arise, and over the last few years numerous genes and pathways have been implicated in playing a role in the suppression of GCRs in Saccharomyces cerevisiae and in some cases in the etiology of cancer (27, 28, 33, 39-47, 51, 53, 56, 58, 60), including S. cerevisiae ASF1, which encodes the main subunit of the replication coupling assembly factor (37, 62).Asf1 is involved in the deposition of histones H3 and H4 onto newly synthesized DNA during DNA replication and repair (62), and correspondingly, asf1 mutants are sensitive to chronic treatment with DNA-damaging agents (2, 30, 62). However, asf1 mutants do not appear to be repair defective and can recover from acute treatment with at least some DNA-damaging agents (2, 8, 30, 31, 54), properties similar to those described for rad9 mutants (68). In the absence of Asf1, both the DNA damage and replication checkpoints become activated during normal cell growth, and in the absence of checkpoint execution, there is a further increase in checkpoint activation in asf1 mutants (30, 46, 54). It has been suggested that asf1 mutants are defective for checkpoint shutoff and that this might account for the increased steady-state levels of checkpoint activation seen in asf1 mutants (8); however, another study has shown that asf1 mutants are not defective for checkpoint shutoff and that in fact Asf1 and the chromatin assembly factor I (CAF-I) complex act redundantly or cooperate in checkpoint shutoff (31). Furthermore, Asf1 might be involved in proper activation of the Rad53 checkpoint protein, as Asf1 physically interacts with Rad53 and this interaction is abrogated in response to exogenous DNA damage (15, 26); however, the physiological relevance of this interaction is unclear. Asf1 is also required for K56 acetylation of histone H3 by Rtt109, and both rtt109 mutants and histone H3 variants that cannot be acetylated (38) share many of the properties of asf1 mutants, suggesting that at least some of the requirement for Asf1 in response to DNA damage is mediated through Rtt109 (11, 14, 22, 61). Subsequent studies of checkpoint activation in asf1 mutants have led to the hypothesis that replication coupling assembly factor defects result in destabilization of replication forks which are then recognized by the replication checkpoint and stabilized, suggesting that the destabilized replication forks account for both the increased GCRs and increased checkpoint activation seen in asf1 mutants (30). This hypothesis is supported by other recent studies implicating Asf1 in the processing of stalled replication forks (16, 57). This role appears to be independent of CAF-I, which can cooperate with Asf1 in chromatin assembly (63). Asf1 has also been shown to function in disassembly of chromatin, suggesting other possibilities for the mechanism of action of Asf1 at the replication fork (1, 2, 34). Thus, while Asf1 is thought to be involved in progression of the replication fork, both the mechanism of action and the factors that cooperate with Asf1 in this process remain obscure.Stalled replication forks, particularly those that stall at sites of DNA damage, can be processed by homologous recombination (HR) (6) or by a mechanism known as postreplication repair (PRR) (reviewed in reference 67). There are two PRR pathways, an error-prone pathway involving translesion synthesis (TLS) by lower-fidelity polymerases and an error-free pathway thought to involve template switching (TS) (67). In S. cerevisiae, the PRR pathways are under the control of the RAD6 epistasis group (64). The error-prone pathway depends on monoubiquitination of proliferating cell nuclear antigen (PCNA) on K164 by Rad6 (an E2 ubiquitin-conjugating enzyme) by Rad18 (E3 ubiquitin ligase) (23). This results in replacement of the replicative DNA polymerase with nonessential TLS DNA polymerases, such as REV3/REV7-encoded DNA polymerase ζ (polζ) and RAD30-encoded DNA polη, which can bypass different types of replication-blocking damage (67). The error-free pathway is controlled by Rad5 (E3) and a complex consisting of Ubc13 and Mms2 (E2 and E2 variant, respectively), which add a K63-linked polyubiquitin chain to monoubiquitinated PCNA, leading to TS to the undamaged nascent sister chromatid (4, 25, 65). Furthermore, in addition to modification with ubiquitin, K164 of PCNA can also be sumoylated by Siz1, resulting in subsequent recruitment of the Srs2 helicase and inhibition of deleterious Rad51-dependent recombination events (50, 52, 55), although it is currently unclear if these are competing PCNA modifications or if both can exist on different subunits in the same PCNA trimer. A separate branch of the Rad6 pathway involving the E3 ligase Bre1 monoubiquitinates the histone H2B (29, 69) as well as Swd2 (66), which stimulates Set1-dependent methylation of K4 and Dot1-dependent methylation of K79 of histone H3 (48, 49, 66). Subsequently, K79-methylated H3 recruits Rad9 and activates the Rad53 checkpoint (19, 70). Activation of Rad53 is also bolstered by Rad6-Rad18-dependent ubiquitination of Rad17, which is part of the 9-1-1 complex that functions upstream in the checkpoint pathway (17). Finally, Rad6 complexes with the E3 Ubr1, which mediates protein degradation by the N-end rule pathway (13).Due to the role of the PRR pathways at stalled replication forks and a recent study implicating the Rad6 pathway in the suppression of GCRs (39), we examined the relationship between these ubiquitination and sumoylation pathways and the Asf1 pathway in order to gain additional insights into the function of Asf1 during DNA replication and repair. Our findings suggest that Asf1 has multiple functions that prevent replication damage or act in the cellular responses to replication damage and that these functions are modified by and interact with the PRR pathways. The TLS PRR pathway does not appear to be involved, and both a Dun1-dependent replication checkpoint and HR are important for preventing the deleterious effects of PRR and Asf1 pathway defects. We hypothesize that this newly observed cooperation between Asf1 and the PRR pathways may be required for resolving stalled replication forks, leading to suppression of GCRs and successful DNA replication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号