首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13212篇
  免费   999篇
  国内免费   4篇
  14215篇
  2023年   83篇
  2022年   153篇
  2021年   314篇
  2020年   208篇
  2019年   230篇
  2018年   386篇
  2017年   297篇
  2016年   459篇
  2015年   678篇
  2014年   757篇
  2013年   957篇
  2012年   1142篇
  2011年   1108篇
  2010年   658篇
  2009年   601篇
  2008年   806篇
  2007年   709篇
  2006年   728篇
  2005年   627篇
  2004年   575篇
  2003年   547篇
  2002年   564篇
  2001年   103篇
  2000年   87篇
  1999年   104篇
  1998年   166篇
  1997年   116篇
  1996年   95篇
  1995年   87篇
  1994年   75篇
  1993年   74篇
  1992年   57篇
  1991年   50篇
  1990年   57篇
  1989年   44篇
  1988年   39篇
  1987年   33篇
  1986年   22篇
  1985年   32篇
  1984年   39篇
  1983年   37篇
  1982年   38篇
  1981年   42篇
  1980年   21篇
  1979年   19篇
  1978年   14篇
  1977年   23篇
  1976年   21篇
  1974年   17篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Hepatitis C virus (HCV) translation initiation is directed by an internal ribosome entry site (IRES) and regulated by distant regions at the 3′-end of the viral genome. Through a combination of improved RNA chemical probing methods, SHAPE structural analysis and screening of RNA accessibility using antisense oligonucleotide microarrays, here, we show that HCV IRES folding is fine-tuned by the genomic 3′-end. The essential IRES subdomains IIIb and IIId, and domain IV, adopted a different conformation in the presence of the cis-acting replication element and/or the 3′-untranslatable region compared to that taken up in their absence. Importantly, many of the observed changes involved significant decreases in the dimethyl sulfate or N-methyl-isatoic anhydride reactivity profiles at subdomains IIIb and IIId, while domain IV appeared as a more flexible element. These observations were additionally confirmed in a replication-competent RNA molecule. Significantly, protein factors are not required for these conformational differences to be made manifest. Our results suggest that a complex, direct and long-distance RNA–RNA interaction network plays an important role in the regulation of HCV translation and replication, as well as in the switching between different steps of the viral cycle.  相似文献   
72.
This study investigated the in vivo effects of a commercial blend of plant extracts (carvacrol, cinnamaldehyde and capsaicin) on serum metabolic parameters closely connected with energy and protein metabolism (glucose; l-lactate; non-esterified fatty acids, NEFA; urea nitrogen, SUN; creatinine; total protein, TSP) and enzymes associated with hepatic function (aspartate-aminotransferase, AST and gamma-glutamyl transferase, GGT) in finishing-stage Belgian Blue bull calves maintained in a commercial feedlot. Monitoring was performed over 86 days in 24 animals randomly allotted to two groups: (1) a control group (CTR, no supplementation; n = 10), and (2) a group receiving dietary supplementation with a commercial blend of plant extracts (PEX, 100 mg/kg DM of concentrate; n = 14). Under the conditions of our study, supplementation with the commercial blend did not give detrimental effects, but the opposite: the decrease in serum l-lactate, NEFA and creatinine levels and the increase in SUN concentrations; suggests an improvement in the energy status and protein turnover of the supplemented animals.  相似文献   
73.
Cannabidiol (CBD) is a major phytocannabinoid present in the Cannabis sativa plant. It lacks the psychotomimetic and other psychotropic effects that the main plant compound Δ9-tetrahydrocannabinol (THC) being able, on the contrary, to antagonize these effects. This property, together with its safety profile, was an initial stimulus for the investigation of CBD pharmacological properties. It is now clear that CBD has therapeutic potential over a wide range of non-psychiatric and psychiatric disorders such as anxiety, depression and psychosis. Although the pharmacological effects of CBD in different biological systems have been extensively investigated by in vitro studies, the mechanisms responsible for its therapeutic potential are still not clear. Here, we review recent in vivo studies indicating that these mechanisms are not unitary but rather depend on the behavioural response being measured. Acute anxiolytic and antidepressant-like effects seem to rely mainly on facilitation of 5-HT1A-mediated neurotransmission in key brain areas related to defensive responses, including the dorsal periaqueductal grey, bed nucleus of the stria terminalis and medial prefrontal cortex. Other effects, such as anti-compulsive, increased extinction and impaired reconsolidation of aversive memories, and facilitation of adult hippocampal neurogenesis could depend on potentiation of anandamide-mediated neurotransmission. Finally, activation of TRPV1 channels may help us to explain the antipsychotic effect and the bell-shaped dose-response curves commonly observed with CBD. Considering its safety profile and wide range of therapeutic potential, however, further studies are needed to investigate the involvement of other possible mechanisms (e.g. inhibition of adenosine uptake, inverse agonism at CB2 receptor, CB1 receptor antagonism, GPR55 antagonism, PPARγ receptors agonism, intracellular (Ca2+) increase, etc.), on CBD behavioural effects.  相似文献   
74.
Autophagy is a vesicular trafficking pathway that regulates the degradation of aggregated proteins and damaged organelles. Initiation of autophagy requires several multiprotein signaling complexes, such as the ULK1 kinase complex and the Vps34 lipid kinase complex, which generates phosphatidylinositol 3-phosphate [PtdIns(3)P] on the forming autophagosomal membrane. Alterations in autophagy have been reported for various diseases, including myopathies. Here we show that skeletal muscle autophagy is compromised in mice deficient in the X-linked myotubular myopathy (XLMTM)-associated PtdIns(3)P phosphatase myotubularin (MTM1). Mtm1-deficient muscle displays several cellular abnormalities, including a profound increase in ubiquitin aggregates and abnormal mitochondria. Further, we show that Mtm1 deficiency is accompanied by activation of mTORC1 signaling, which persists even following starvation. In vivo pharmacological inhibition of mTOR is sufficient to normalize aberrant autophagy and improve muscle phenotypes in Mtm1 null mice. These results suggest that aberrant mTORC1 signaling and impaired autophagy are consequences of the loss of Mtm1 and may play a primary role in disease pathogenesis.  相似文献   
75.
Despite sharing much of their genomes, males and females are often highly dimorphic, reflecting at least in part the resolution of sexual conflict in response to sexually antagonistic selection. Sexual dimorphism arises owing to sex differences in gene expression, and steroid hormones are often invoked as a proximate cause of sexual dimorphism. Experimental elevation of androgens can modify behavior, physiology, and gene expression, but knowledge of the role of hormones remains incomplete, including how the sexes differ in gene expression in response to hormones. We addressed these questions in a bird species with a long history of behavioral endocrinological and ecological study, the dark-eyed junco (Junco hyemalis), using a custom microarray. Focusing on two brain regions involved in sexually dimorphic behavior and regulation of hormone secretion, we identified 651 genes that differed in expression by sex in medial amygdala and 611 in hypothalamus. Additionally, we treated individuals of each sex with testosterone implants and identified many genes that may be related to previously identified phenotypic effects of testosterone treatment. Some of these genes relate to previously identified effects of testosterone-treatment and suggest that the multiple effects of testosterone may be mediated by modifying the expression of a small number of genes. Notably, testosterone-treatment tended to alter expression of different genes in each sex: only 4 of the 527 genes identified as significant in one sex or the other were significantly differentially expressed in both sexes. Hormonally regulated gene expression is a key mechanism underlying sexual dimorphism, and our study identifies specific genes that may mediate some of these processes.  相似文献   
76.
Surfactant protein A (SP-A) is known to cause bacterial permeabilization. The aim of this work was to gain insight into the mechanism by which SP-A induces permeabilization of rough lipopolysaccharide (Re-LPS) membranes. In the presence of calcium, large interconnected aggregates of fluorescently labeled TR-SP-A were observed on the surface of Re-LPS films by epifluorescence microscopy. Using Re-LPS monolayer relaxation experiments at constant surface pressure, we demonstrated that SP-A induced Re-LPS molecular loss by promoting the formation of three-dimensional lipid-protein aggregates in Re-LPS membranes. This resulted in decreased van der Waals interactions between Re-LPS acyl chains, as determined by differential scanning calorimetry, which rendered the membrane leaky. We also showed that the coexistence of gel and fluid lipid phases within the Re-LPS membrane conferred susceptibility to SP-A-mediated permeabilization. Taken together, our results seem to indicate that the calcium-dependent permeabilization of Re-LPS membranes by SP-A is related to the extraction of LPS molecules from the membrane due to the formation of calcium-mediated protein aggregates that contain LPS.  相似文献   
77.
Tuberous sclerosis complex (TSC) is an autosomal dominant cancer predisposition disorder caused by heterozygous mutations in TSC1 or TSC2 genes and characterized by mTORC1 hyperactivation. TSC-associated tumors develop after loss of heterozygosity mutations and their treatment involves the use of mTORC1 inhibitors. We aimed to evaluate cellular processes regulated by mTORC1 in TSC cells with different mutations before tumor development. Flow cytometry analyses were performed to evaluate cell viability, cell cycle and autophagy in non-tumor primary TSC cells with different heterozygous mutations and in control cells without TSC mutations, before and after treatment with rapamycin (mTORC1 inhibitor). We did not observe differences in cell viability and cell cycle between the cell groups. However, autophagy was reduced in mutated cells. After rapamycin treatment, mutated cells showed a significant increase in the autophagy process (p=0.039). We did not observe differences between cells with distinct TSC mutations. Our main finding is the alteration of autophagy in non-tumor TSC cells. Previous studies in literature found autophagy alterations in tumor TSC cells or knock-out animal models. We showed that autophagy could be an important mechanism that leads to TSC tumor formation in the haploinsufficiency state. This result could guide future studies in this field.  相似文献   
78.
The antibiotic resistance phenotype and genotype and the integron type were characterized in 58 Salmonella enterica isolates recovered from Bísaro pigs and wild boars (20 S. Typhimurium, 17 S. Rissen, 14 S. Enteritidis and 7 S. Havana). Most S. Typhimurium isolates (15/20 of Bísaro pigs and wild boars) showed ampicillin, chloramphenicol, streptomycin, tetracycline, sulfonamide, and amoxicillin-clavulanic acid resistances. Of the 17 S. Rissen isolates of both origins, 13 were resistant to ampicillin, tetracycline and trimethoprim-sulfamethoxazole. Among the S. Enteritidis isolates of Bísaro pigs, eight were nalidixic acid-resistant and three were sulfonamide-resistant. The tet(A) or tet(G) genes were detected in most tetracycline-resistant isolates. The intI1 gene was identified in 72.5% of S. enterica isolates in which the conserved region 3' of class 1 integrons (qacEΔ1+sul1) was also amplified, whereas none had the intI2 gene. The dfrA12+orfF+aadA2 gene cassette arrangement was found in the variable region of class 1 integrons in 14 S. Rissen isolates. Fifteen S. Typhimurium isolates had two integrons with variable regions of 1000 and 1200 bp that harbored the aadA2 and blaPSE-1 gene cassettes, respectively. In these isolates the floR and tet(G) genes were also amplified, indicative of the genomic island 1 (SGI1). Salmonella Typhimurium and S. Rissen of animal origin frequently show a multi-antimicrobial resistant phenotype, which may have implications in public health.  相似文献   
79.
Host sanctions that reduce the relative fitness of uncooperative symbionts provide a mechanism that can limit cheating and thus stabilise mutualisms over evolutionary timescales. Sanctions have been demonstrated empirically in several mutualisms. However, if multiple individual symbionts interact with each host, the precision with which individual cheating symbionts are targeted by host sanctions is critical to their short‐ and long‐term effectiveness. No previous empirical study has directly addressed this issue. Here, we report the precision of host sanctions in the mutualism between fig trees and their pollinating wasps. Using field experiments and molecular parentage analyses, we show that sanctions in Ficus nymphaeifolia act at the level of entire figs (syconia), not at the level of the individual flowers within. Such fig‐level sanctions allow uncooperative wasps, which do not bring pollen, to avoid sanctions in figs to which other wasps bring pollen. We discuss the relevance of sanction precision to other mutualisms.  相似文献   
80.
Photosystem II, the oxygen-evolving complex of photosynthetic organisms, includes an intriguingly large number of low molecular weight polypeptides, including PsbM. Here we describe the first knock-out of psbM using a transplastomic, reverse genetics approach in a higher plant. Homoplastomic Delta psbM plants exhibit photoautotrophic growth. Biochemical, biophysical, and immunological analyses demonstrate that PsbM is not required for biogenesis of higher order photosystem II complexes. However, photosystem II is highly light-sensitive, and its activity is significantly decreased in Delta psbM, whereas kinetics of plastid protein synthesis, reassembly of photosystem II, and recovery of its activity are comparable with the wild type. Unlike wild type, phosphorylation of the reaction center proteins D1 and D2 is severely reduced, whereas the redox-controlled phosphorylation of photosystem II light-harvesting complex is reversely regulated in Delta psbM plants because of accumulation of reduced plastoquinone in the dark and a limited photosystem II-mediated electron transport in the light. Charge recombination in Delta psbM measured by thermoluminescence oscillations significantly differs from the 2/6 patterns in the wild type. A simulation program of thermoluminescence oscillations indicates a higher Q(B)/Q(-)(B) ratio in dark-adapted mutant thylakoids relative to the wild type. The interaction of the Q(A)/Q(B) sites estimated by shifts in the maximal thermoluminescence emission temperature of the Q band, induced by binding of different herbicides to the Q(B) site, is changed indicating alteration of the activation energy for back electron flow. We conclude that PsbM is primarily involved in the interaction of the redox components important for the electron flow within, outward, and backward to photosystem II.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号