首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4152篇
  免费   300篇
  国内免费   1篇
  2023年   33篇
  2022年   23篇
  2021年   60篇
  2020年   65篇
  2019年   70篇
  2018年   148篇
  2017年   131篇
  2016年   183篇
  2015年   229篇
  2014年   216篇
  2013年   276篇
  2012年   285篇
  2011年   296篇
  2010年   181篇
  2009年   130篇
  2008年   229篇
  2007年   227篇
  2006年   188篇
  2005年   178篇
  2004年   196篇
  2003年   153篇
  2002年   125篇
  2001年   116篇
  2000年   118篇
  1999年   76篇
  1998年   34篇
  1997年   24篇
  1996年   15篇
  1995年   10篇
  1994年   13篇
  1993年   14篇
  1992年   29篇
  1991年   36篇
  1990年   39篇
  1989年   26篇
  1988年   29篇
  1987年   17篇
  1986年   21篇
  1985年   22篇
  1984年   9篇
  1983年   14篇
  1982年   10篇
  1979年   9篇
  1975年   22篇
  1974年   10篇
  1973年   14篇
  1972年   9篇
  1971年   11篇
  1970年   8篇
  1969年   12篇
排序方式: 共有4453条查询结果,搜索用时 15 毫秒
101.
102.

Background and aims

Exotic species, nitrogen (N) deposition, and grazing are major drivers of change in grasslands. However little is known about the interactive effects of these factors on below-ground microbial communities.

Methods

We simulated realistic N deposition increases with low-level fertilization and manipulated grazing with fencing in a split-plot experiment in California’s largest serpentine grassland. We also monitored grazing intensity using camera traps and measured total available N to assess grazing and nutrient enrichment effects on microbial extracellular enzyme activity (EEA), microbial N mineralization, and respiration rates in soil.

Results

Continuous measures of grazing intensity and N availability showed that increased grazing and N were correlated with increased microbial activity and were stronger predictors than the categorical grazing and fertilization measures. Exotic cover was also generally correlated with increased microbial activity resulting from exotic-driven nutrient cycling alterations. Seasonal effects, on abiotic factors and plant phenology, were also an important factor in EEA with lower activity occurring at peak plant biomass.

Conclusions

In combination with previous studies from this serpentine grassland, our results suggest that grazing intensity and soil N availability may affect the soil microbial community indirectly via effects on exotic cover and associated changes in nutrient cycling while grazing directly impacts soil community function.  相似文献   
103.
Metal phytoextraction assisted by bacteria plays an important role in bioremediation systems. In this work, mercury-resistant bacterial strains were isolated from soils with high levels of mercury (San Joaquin, Queretaro State, Mexico) and identified as Bacillus sp. based on the 16S rDNA gene sequence analysis. The bacterial strains were found to exhibit different multiple mercury-resistance and carbon source utilization characteristics. The mercury reduction ability was tested through a volatilization assay. The bacterial isolates were also evaluated for their ability to promote growth and mercury uptake in tomato plants. In a roll towel assay, the maximum vigor index of tomato plants was obtained with the inoculation of Bacillus sp. A2, A12, B11, B15 and C1, while in a pot assay, the maximum vigor index was obtained with the inoculation of Bacillus sp. A6, A7 and B20, compared with un-inoculated controls in the presence of HgCl2. Maximum Hg accumulation in the roots and shoots of tomato plants was obtained only with Bacillus sp. A7 in the roll towel assay, whereas in the pot assay, maximum accumulation was obtained with Bacillus sp. A12 compared with un-inoculated controls. Our results show that mercury accumulation in tissue is enhanced by these plant growth promoting bacterial strains, which recommends their possible use as microbe-assisted phytoremediation systems in mercury-polluted soils.  相似文献   
104.
The complete larval development of the shallow-water Caribbean porcellanid crab, Petrolisthes politus (Gray, 1831), is described and illustrated from specimens reared in the laboratory. Petrolisthes politus hatches as a prezoea, which persist for less than 90 minutes, and then molts through two subsequent zoeal stages, which are completed in 6 to 7 and 14 to 16 days, respectively, before the megalopal stage is reached. From a total of about 2000 zoeae that were cultured, only two reached the megalopal stage. The two megalopae survived for up to 5 days but did not molt to the first crab stage. The zoeae of P. politus are compared with those of Petrolisthes rufescens (Heller, 1861), Petrolisthes lamarckii (Leach, 1820), Petrolisthes carinipes (Heller, 1861), Petrolisthes coccineus (Owen 1839) and Petrolisthes pubescens (Stimpson, 1858), which were hitherto the only species having bifid lateral spines on the telson of the first zoeal stage.  相似文献   
105.
Biogenic amines (BAs) play a central role in the generation of complex behaviors in vertebrates and invertebrates, including the fly Drosophila melanogaster. The comparative advantages of Drosophila as a genetic model to study the contribution of BAs to behaviors stumble upon the difficulty to access the fly brain to ask relevant physiological questions. For instance, it is not known whether the activation of nicotinic acetylcholine receptors (nAChRs) induces the release of BAs in fly brain, a phenomenon associated to several behaviors in vertebrates. Here, we describe a new preparation to study the efflux of BAs in the adult fly brain by in vitro chronoamperometry. Using this preparation we show that nAChR agonists including nicotine induce a fast, transient, dose‐dependent efflux of endogenous BAs, an effect mediated by α‐bungarotoxin‐sensitive nAChRs. By using different genetic tools we demonstrate that the BA whose efflux is induced by nAChR activation is octopamine (Oct). Furthermore, we show that the impairment of a mechanically induced startle response after nicotine exposure is not observed in flies deficient in Oct transmission. Thus, our data show that the efflux of BAs in Drosophila brain is increased by nAChR activation as in vertebrates, and that then AChR‐induced Oct release could have implications in a nicotine‐induced behavioral response.  相似文献   
106.
The interaction of MinC with FtsZ and its effects on FtsZ polymerization were studied under close to physiological conditions by a combination of biophysical methods. The Min system is a widely conserved mechanism in bacteria that ensures the correct placement of the division machinery at midcell. MinC is the component of this system that effectively interacts with FtsZ and inhibits the formation of the Z-ring. Here we report that MinC produces a concentration-dependent reduction in the size of GTP-induced FtsZ protofilaments (FtsZ-GTP) as demonstrated by analytical ultracentrifugation, dynamic light scattering, fluorescence correlation spectroscopy, and electron microscopy. Our experiments show that, despite being shorter, FtsZ protofilaments maintain their narrow distribution in size in the presence of MinC. The protein had the same effect regardless of its addition prior to or after FtsZ polymerization. Fluorescence anisotropy measurements indicated that MinC bound to FtsZ-GDP with a moderate affinity (apparent KD ∼10 μm at 100 mm KCl and pH 7.5) very close to the MinC concentration corresponding to the midpoint of the inhibition of FtsZ assembly. Only marginal binding of MinC to FtsZ-GTP protofilaments was observed by analytical ultracentrifugation and fluorescence correlation spectroscopy. Remarkably, MinC effects on FtsZ-GTP protofilaments and binding affinity to FtsZ-GDP were strongly dependent on ionic strength, being severely reduced at 500 mm KCl compared with 100 mm KCl. Our results support a mechanism in which MinC interacts with FtsZ-GDP, resulting in smaller protofilaments of defined size and having the same effect on both preassembled and growing FtsZ protofilaments.  相似文献   
107.
The stridulatory organ of the Crematogaster scutellaris (Olivier 1792) workers is being described, comparing their pars stridens present in six nests of this species, with one nest of Crematogaster auberti Emery 1869 and with the bibliographical data regarding other neighbouring species at our disposal. Both species and some Crematogaster scutellaris nests have shown significant differences. We propose several hypotheses which could explain these differences.  相似文献   
108.
109.
To successfully design new proteins and understand the effects of mutations in natural proteins, we must understand the geometric and physicochemical principles underlying protein structure. The side chains of amino acids in peptides and proteins adopt specific dihedral angle combinations; however, we still do not have a fundamental quantitative understanding of why some side-chain dihedral angle combinations are highly populated and others are not. Here we employ a hard-sphere plus stereochemical constraint model of dipeptide mimetics to enumerate the side-chain dihedral angles of leucine (Leu) and isoleucine (Ile), and identify those conformations that are sterically allowed versus those that are not as a function of the backbone dihedral angles ? and ψ. We compare our results with the observed distributions of side-chain dihedral angles in proteins of known structure. With the hard-sphere plus stereochemical constraint model, we obtain agreement between the model predictions and the observed side-chain dihedral angle distributions for Leu and Ile. These results quantify the extent to which local, geometrical constraints determine protein side-chain conformations.  相似文献   
110.
Studies comparing the abundance of frugivorous bats in shade‐coffee plantations and forest fragments report contradictory results, and have not taken into account the landscape context in which coffee plantations are immersed. Variables of population composition such as abundance, sex proportion, and reproductive condition, together with biological tags (i.e., bat fly prevalence), can provide information about spatiotemporal dynamics of habitats used by bats. In the central part of Veracruz, Mexico, we compared population variables and ectoparasite prevalence of the highland yellow‐shouldered bat (Sturnira ludovici) in two landscapes, one dominated by shade‐coffee plantations and another by forest fragments. Comparing these attributes between these two landscapes will increase our knowledge about the role of this agro‐ecosystem in the conservation of this species, which is an important seed disperser of cloud forest vegetation. Total abundance and proportion of females was greater in forest fragments than in coffee plantations, whereas the percentage of reproductive females and bat fly prevalence was similar between landscapes. Our results show that landscapes with forest fragments harbor the greatest abundance of S. ludovici, but shade‐coffee plantations also are utilized by S. ludovici and likely adjacent forest remnants provide enough food resources for this species and other frugivores. Moreover, this study provides more evidence documenting the importance of preserving the last cloud forest fragments in the central region of Veracruz, Mexico, and suggests that using shade‐coffee plantations to connect forest fragments may be an effective way of maintaining populations of S. ludovici and likely other volant frugivores.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号