首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1622篇
  免费   136篇
  国内免费   2篇
  1760篇
  2022年   15篇
  2021年   23篇
  2020年   7篇
  2019年   12篇
  2018年   24篇
  2017年   22篇
  2016年   41篇
  2015年   71篇
  2014年   69篇
  2013年   87篇
  2012年   130篇
  2011年   107篇
  2010年   82篇
  2009年   71篇
  2008年   124篇
  2007年   101篇
  2006年   105篇
  2005年   102篇
  2004年   98篇
  2003年   90篇
  2002年   77篇
  2001年   32篇
  2000年   11篇
  1999年   25篇
  1998年   24篇
  1997年   21篇
  1996年   17篇
  1995年   17篇
  1994年   19篇
  1993年   19篇
  1992年   14篇
  1991年   11篇
  1990年   6篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1986年   9篇
  1985年   7篇
  1983年   4篇
  1982年   5篇
  1981年   5篇
  1979年   3篇
  1978年   4篇
  1977年   5篇
  1976年   8篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1968年   3篇
  1965年   2篇
排序方式: 共有1760条查询结果,搜索用时 0 毫秒
91.
Interferon alpha-2a plays an essential role in the treatment of chronic hepatitis C, but it is limited in its efficacy by the short in vivo half-life. To improve the half-life and efficacy, interferon alpha-2a is conjugated with a 40-kDa branched polyethylene glycol moiety (PEG-IFN, PEGASYS). From this preparation the positional PEG-IFN isomers were isolated and characterized by different analytical methods and antiviral assay. Two chromatographic steps were used to separate and purify nine isomers. The analytical methods IE-HPLC, RP-HPLC, SE-HPLC, SDS-PAGE, and MALDI-TOF MS indicated that each of these nine isomers is conjugated to the branched polyethylene glycol chain at a specific lysine. No isomer with a modification at the amino terminus was observed. All positional isomers induced viral protection of MDBK cells in the antiviral assay. When comparing the quantitative potency of the individual isomers with the whole mixture of PEG-IFN, significant differences in the specific activities were observed: PEG-Lys(31) and PEG-Lys(134) showed higher activities than the mixture, PEG-Lys(164) was equal to the mixture, whereas the activities of PEG-Lys(49), PEG-Lys(70), PEG-Lys(83), PEG-Lys(112), PEG-Lys(121), and PEG-Lys(131) were lower.  相似文献   
92.
In liver resection and transplantation ischemia-reperfusion injury (IRI) is one of the main causes of organ dys- or nonfunction. The aim of the present study was to determine whether alpha-lipoic acid (LA) is able to attenuate IRI. Rat livers were perfused with Krebs-Henseleit buffer with or without LA (+/-wortmannin), followed by ischemia (1 h, 37 degrees C) and reperfusion (90 min). Efflux of lactate dehydrogenase (LDH) and purine nucleoside phosphorylase (PNP) and hepatic ATP content were determined enzymatically. Activation of NF-kappaB and activating protein 1 (AP-1) was examined by EMSA, and protein phosphorylation was examined by Western blot. Caspase-3-like activity served as an indicator for apoptotic processes. Animals treated intravenously with 500 micromol LA were subjected to 90 min of partial no-flow ischemia followed by reperfusion for up to 7 days. Preconditioning with LA significantly reduced LDH and PNP efflux during reperfusion in isolated perfused rat livers. ATP content was significantly increased in LA-treated livers. Postischemic activation of NF-kappaB and AP-1 was significantly reduced in LA-pretreated organs. Preconditioning with LA significantly enhanced Akt phosphorylation. It showed neither effect on endothelial nitric oxide synthase nor on Bad phosphorylation. Importantly, simultaneous administration of wortmannin, an inhibitor of the phosphatidylinositol (PI)3-kinase/Akt pathway, blocked the protective effect of LA on IRI, demonstrating a causal relationship between Akt activation and hepatoprotection by LA. Interestingly, despite activation of Akt, LA did not reduce postischemic apoptotic cell death. The efficacy of LA treatment in vivo was shown by reduced GST plasma levels and improved liver histology of animals pretreated with LA. This study shows for the first time that the PI3-kinase/Akt pathway plays a central protective role in IRI of the rat liver and that LA administration attenuates IRI via this pathway.  相似文献   
93.
Mitochondrial porin facilitates the diffusion of small hydrophilic molecules across the mitochondrial outer membrane. Despite low sequence similarity among porins from different species, a glycine-leucine-lysine (GLK) motif is conserved in mitochondrial and Neisseria porins. To investigate the possible roles of these conserved residues, including their hypothesized participation in ATP binding by the protein, we replaced the lysine residue of the GLK motif of Neurospora crassa porin with glutamic acid through site-directed mutagenesis of the corresponding gene. Although the pores formed by this protein have size and gating characteristics similar to those of the wild-type protein, the channels formed by GLEporin are less anion selective than the wild-type pores. The GLEporin retains the ability to be cross linked to [-32P]ATP, indicating that the GLK sequence is not essential for ATP binding. Furthermore, the pores formed by both GLEporin and the wild-type protein become more cation selective in the presence of ATP. Taken together, these results support structural models that place the GLK motif in a part of the ion-selective -barrel that is not directly involved in ATP binding.  相似文献   
94.
95.
96.
97.
The adaptation of protein synthesis to environmental and physiological challenges is essential for cell viability. Here, we show that translation is tightly linked to the protein‐folding environment of the cell through the functional properties of the ribosome bound chaperone NAC (nascent polypeptide‐associated complex). Under non‐stress conditions, NAC associates with ribosomes to promote translation and protein folding. When proteostasis is imbalanced, NAC relocalizes from a ribosome‐associated state to protein aggregates in its role as a chaperone. This results in a functional depletion of NAC from the ribosome that diminishes translational capacity and the flux of nascent proteins. Depletion of NAC from polysomes and re‐localisation to protein aggregates is observed during ageing, in response to heat shock and upon expression of the highly aggregation‐prone polyglutamine‐expansion proteins and Aβ‐peptide. These results demonstrate that NAC has a central role as a proteostasis sensor to provide the cell with a regulatory feedback mechanism in which translational activity is also controlled by the folding state of the cellular proteome and the cellular response to stress.  相似文献   
98.
Many cellular functions are driven by changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) that are highly organized in time and space. Ca(2+) oscillations are particularly important in this respect and are based on positive and negative [Ca(2+)](i) feedback on inositol 1,4,5-trisphosphate receptors (InsP(3)Rs). Connexin hemichannels are Ca(2+)-permeable plasma membrane channels that are also controlled by [Ca(2+)](i). We aimed to investigate how hemichannels may contribute to Ca(2+) oscillations. Madin-Darby canine kidney cells expressing connexin-32 (Cx32) and Cx43 were exposed to bradykinin (BK) or ATP to induce Ca(2+) oscillations. BK-induced oscillations were rapidly (minutes) and reversibly inhibited by the connexin-mimetic peptides (32)Gap27/(43)Gap26, whereas ATP-induced oscillations were unaffected. Furthermore, these peptides inhibited the BK-triggered release of calcein, a hemichannel-permeable dye. BK-induced oscillations, but not those induced by ATP, were dependent on extracellular Ca(2+). Alleviating the negative feedback of [Ca(2+)](i) on InsP(3)Rs using cytochrome c inhibited BK- and ATP-induced oscillations. Cx32 and Cx43 hemichannels are activated by <500 nm [Ca(2+)](i) but inhibited by higher concentrations and CT9 peptide (last 9 amino acids of the Cx43 C terminus) removes this high [Ca(2+)](i) inhibition. Unlike interfering with the bell-shaped dependence of InsP(3)Rs to [Ca(2+)](i), CT9 peptide prevented BK-induced oscillations but not those triggered by ATP. Collectively, these data indicate that connexin hemichannels contribute to BK-induced oscillations by allowing Ca(2+) entry during the rising phase of the Ca(2+) spikes and by providing an OFF mechanism during the falling phase of the spikes. Hemichannels were not sufficient to ignite oscillations by themselves; however, their contribution was crucial as hemichannel inhibition stopped the oscillations.  相似文献   
99.
100.
Being praised for the mere fact of enabling the detection of individual fluorophores a dozen years ago, single-molecule techniques nowadays represent standard methods for the elucidation of the structural rearrangements of biologically relevant macromolecules. Single-molecule-sensitive techniques, such as fluorescence correlation spectroscopy, allow real-time access to a multitude of molecular parameters (e.g. diffusion coefficients, concentration and molecular interactions). As a result of various recent advances, this technique shows promise even for intracellular applications. Fluorescence imaging can reveal the spatial localization of fluorophores on nanometer length scales, whereas fluorescence resonance energy transfer supports a wide range of different applications, including real-time monitoring of conformational rearrangements (as in protein folding). Still in their infancy, single-molecule spectroscopic methods thus provide unprecedented insights into basic molecular mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号