首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1909篇
  免费   175篇
  国内免费   3篇
  2022年   16篇
  2021年   25篇
  2020年   8篇
  2019年   12篇
  2018年   32篇
  2017年   26篇
  2016年   52篇
  2015年   80篇
  2014年   77篇
  2013年   96篇
  2012年   143篇
  2011年   114篇
  2010年   91篇
  2009年   81篇
  2008年   135篇
  2007年   117篇
  2006年   125篇
  2005年   116篇
  2004年   115篇
  2003年   106篇
  2002年   85篇
  2001年   42篇
  2000年   15篇
  1999年   32篇
  1998年   26篇
  1997年   22篇
  1996年   20篇
  1995年   18篇
  1994年   22篇
  1993年   19篇
  1992年   18篇
  1991年   15篇
  1990年   12篇
  1989年   9篇
  1988年   12篇
  1987年   18篇
  1986年   15篇
  1985年   16篇
  1984年   7篇
  1983年   7篇
  1982年   12篇
  1981年   7篇
  1980年   4篇
  1979年   4篇
  1978年   10篇
  1977年   7篇
  1976年   11篇
  1974年   6篇
  1972年   8篇
  1968年   4篇
排序方式: 共有2087条查询结果,搜索用时 15 毫秒
151.
152.
153.
154.
155.
The accumulation of cytosolic lipid droplets in muscle and liver cells has been linked to the development of insulin resistance and type 2 diabetes. Such droplets are formed as small structures that increase in size through fusion, a process that is dependent on intact microtubules and the motor protein dynein. Approximately 15% of all droplets are involved in fusion processes at a given time. Here, we show that lipid droplets are associated with proteins involved in fusion processes in the cell: NSF (N-ethylmaleimide-sensitive-factor), alpha-SNAP (soluble NSF attachment protein) and the SNAREs (SNAP receptors), SNAP23 (synaptosomal-associated protein of 23 kDa), syntaxin-5 and VAMP4 (vesicle-associated membrane protein 4). Knockdown of the genes for SNAP23, syntaxin-5 or VAMP4, or microinjection of a dominant-negative mutant of alpha-SNAP, decreases the rate of fusion and the size of the lipid droplets. Thus, the SNARE system seems to have an important role in lipid droplet fusion. We also show that oleic acid treatment decreases the insulin sensitivity of heart muscle cells, and this sensitivity is completely restored by transfection with SNAP23. Thus, SNAP23 might be a link between insulin sensitivity and the inflow of fatty acids to the cell.  相似文献   
156.

Background  

The lemurs of Madagascar provide an excellent mammalian radiation to explore mechanisms and processes favouring species diversity and evolution. Species diversity, in particular of nocturnal species, increased considerably during the last decade. However, the factors contributing to this high diversity are not well understood. We tested predictions derived from two existing biogeographic models by exploring the genetic and morphological divergence among populations of a widely distributed lemur genus, the sportive lemur (Lepilemur ssp.) along a 560 km long transect from western to northern Madagascar.  相似文献   
157.
CD4+ T cells with their growing list of effector and regulatory subpopulations have vital functions within the immunohematopoietic system. We report here on the first mouse lines that allow temporally and quantitatively controlled expression of transgenes specifically in CD4+ thymocytes and T cells. These were constructed using the Tet-on system. The rtTA2(S)-M2 version of the reverse tetracycline-dependent transactivator was placed under control of all known CD4 regulatory elements. Reporter transgene expression in mice expressing these constructs is highly specific for CD4+ cells, is strictly dependent on the tetracycline derivative doxycycline, and can be regulated by up to five logs depending on the doxycycline concentration. Moreover, we demonstrate that these mice can be used for noninvasive in vivo imaging of a coexpressed luciferase reporter. These new mouse lines should be highly valuable for studying and manipulating numerous aspects of CD4+ T cell development, biology, and function.  相似文献   
158.
Reports in recent years indicate that the increasing emergence of resistance to drugs be using to TB treatment. The resistance to them severely affects to options for effective treatment. The emergence of multidrug-resistant tuberculosis has increased interest in understanding the mechanism of drug resistance in M. tuberculosis and the development of new therapeutics, diagnostics and vaccines. In this study, a label-free quantitative proteomics approach has been used to analyze proteome of multidrug-resistant and susceptible clinical isolates of M. tuberculosis and identify differences in protein abundance between the two groups. With this approach, we were able to identify a total of 1,583 proteins. The majority of identified proteins have predicted roles in lipid metabolism, intermediary metabolism, cell wall and cell processes. Comparative analysis revealed that 68 proteins identified by at least two peptides showed significant differences of at least twofolds in relative abundance between two groups. In all protein differences, the increase of some considering proteins such as NADH dehydrogenase, probable aldehyde dehydrogenase, cyclopropane mycolic acid synthase 3, probable arabinosyltransferase A, putative lipoprotein, uncharacterized oxidoreductase and six membrane proteins in resistant isolates might be involved in the drug resistance and to be potential diagnostic protein targets. The decrease in abundance of proteins related to secretion system and immunogenicity (ESAT-6-like proteins, ESX-1 secretion system associated proteins, O-antigen export system and MPT63) in the multidrug-resistant strains can be a defensive mechanism undertaken by the resistant cell.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0511-2) contains supplementary material, which is available to authorized users.  相似文献   
159.
It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号